Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mass Spectrom ; 435: 136-144, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31105465

RESUMO

Top-down mass spectrometry and direct dissociation of gas phase intact proteins have been demonstrated to be a powerful platform for identifying proteins from complex mixtures and for elucidating post-translational modifications (PTMs). Fragmentation of proteins in the atmospheric pressure/vacuum interface of the electrospray ionization mass spectrometer is an effective dissociation technique that can be utilized for on-line HPLC top-down analysis. We demonstrate the capability to perform intact protein identifications in a single-stage time-of- flight (TOF) mass spectrometer in a data independent (DIA) acquisition fashion by rapidly switching the in-source dissociation (ISD) energy during protein elution from a liquid chromatography (LC) column. The intact protein and product ion masses obtained at low and high ISD energies, respectively, were measured using a TOF mass analyzer. By coupling on-line protein separations to dissociation in the atmospheric pressure/vacuum interface region of the mass spectrometer, we identified proteins in simple complexity mixtures, including subunits from the human 20S proteasome complex, and PTMs such as phosphorylation and N-terminal acetylation events. This proof-of-principle study demonstrates that a data-independent pseudo- MS/MS method could be a relatively in-expensive platform for top-down MS.

2.
Int J Mass Spectrom ; 427: 157-164, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29750076

RESUMO

Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.

3.
Proteomics ; 14(10): 1271-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24478249

RESUMO

A comparison of different data-independent fragmentation methods combined with LC coupled to high-resolution FT-ICR-MS/MS is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complexes and their PTMs were identified using a 15 T FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty-cycle measurements that better suit online LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (continuous accumulation of selected ions)-CAD. The N-termini for 9 of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass-measurement accuracy with the LC-FT-ICR system for the 20- to 30-kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100-kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact-protein fragmentation and is an effective addition to the growing inventory of dissociation methods that are compatible with online protein separation coupled to FT-ICR-MS.


Assuntos
Cromatografia Líquida/métodos , Fragmentos de Peptídeos/química , Complexo de Endopeptidases do Proteassoma/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/instrumentação , Humanos , Fragmentos de Peptídeos/análise , Complexo de Endopeptidases do Proteassoma/análise , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/instrumentação
4.
Int J Mass Spectrom ; 325-327: 161-166, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25878557

RESUMO

We recently reported the use of desorption electrospray ionization (DESI) as a novel interface to couple high-performance liquid chromatography (HPLC) with mass spectrometry (MS) (Chem. Commun. 2011, 47, 4171). One of the benefits of such an interface is that post-column derivatization of separated analytes can be integrated with ionization via a "reactive" DESI approach in which a derivatizing reagent is doped into the spray solvent. The reactive DESI interface allows analyte desorption/ionization from the end of the chromatographic column with prompt MS detection; a short time delay of ~20 ms was demonstrated. In this study, we extended this application by "supercharging" proteins following HPLC separation using a DESI spray solvent containing supercharging reagents, m-nitrobenzyl alcohol (m-NBA) or sulfolane. Proteins (insulin, ubiquitin, lysozyme and α-lactalbumin) eluted out of the LC column can be supercharged with the protein charge state distributions (CSDs) significantly increased (to higher charge), which would be advantageous for subsequent top-down MS analysis of proteins. Interestingly, supercharging combined with reactive DESI enhances tolerance towards trifluoroacetic acid (TFA), which is known to be a superior additive in the mobile phase for premium peptide/protein chromatographic separation but has severe signal suppression effects for conventional electrospray ionization (ESI). In comparison to electrosonic spray ionization (ESSI), a variant form of ESI, the sensitivity of protein analysis using LC/DESI-MS with the mobile phase containing TFA can be improved by up to 70-fold for lysozyme and α-lactalbumin by including m-NBA in the DESI spray solvent. Presumably, by reducing TFA dissociation in the droplet, supercharging agents lower trifluoroacetate anion concentrations and concomitantly reduce ion pairing to analyte cationic sites. The reduced ion pairing therefore decreases the TFA signal suppression effect. The supercharging capability and the reduction of TFA signal suppression suggest that LC/DESI-MS is a valuable method for protein analysis.

5.
J Am Soc Mass Spectrom ; 25(10): 1675-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25135609

RESUMO

Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte).


Assuntos
Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Modelos Químicos , Conformação Proteica
6.
Neurotherapeutics ; 9(2): 464-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22373667

RESUMO

Aggregation of α-synuclein (α-syn) is implicated as being causative in the pathogenesis of Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. Despite several therapies that improve symptoms in these disorders, none slow disease progression. Recently, a novel "molecular tweezer" (MT) termed CLR01 has been described as a potent inhibitor of assembly and toxicity of multiple amyloidogenic proteins. Here we investigated the ability of CLR01 to inhibit assembly and toxicity of α-syn. In vitro, CLR01 inhibited the assembly of α-syn into ß-sheet-rich fibrils and caused disaggregation of pre-formed fibrils, as determined by thioflavin T fluorescence and electron microscopy. α-Syn toxicity was studied in cell cultures and was completely mitigated by CLR01 when α-syn was expressed endogenously or added exogenously. To determine if CLR01 was also protective in vivo, we used a novel zebrafish model of α-syn toxicity (α-syn-ZF), which expresses human, wild-type α-syn in neurons. α-Syn-ZF embryos developed severe deformities due to neuronal apoptosis and most of them died within 48 to 72 h. CLR01 added to the water significantly improved zebrafish phenotype and survival, suppressed α-syn aggregation in neurons, and reduced α-syn-induced apoptosis. α-Syn expression was found to inhibit the ubiquitin proteasome system in α-syn-ZF neurons, resulting in further accumulation of α-syn. Treatment with CLR01 almost completely mitigated the proteasome inhibition. The data suggest that CLR01 is a promising therapeutic agent for the treatment of Parkinson's disease and other synucleinopathies.


Assuntos
Terapia Genética/métodos , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade , Animais , Células Cultivadas , Células HEK293 , Humanos , Mutação/genética , Síndromes Neurotóxicas/enzimologia , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/terapia , Complexo de Endopeptidases do Proteassoma/genética , Conformação Proteica , Peixe-Zebra , alfa-Sinucleína/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA