Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 346, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985425

RESUMO

BACKGROUND: Transcriptomic data has demonstrated utility to advance the study of physiological diversity and organisms' responses to environmental stressors. However, a lack of genomic resources and challenges associated with collecting high-quality RNA can limit its application for many wild populations. Minimally invasive blood sampling combined with de novo transcriptomic approaches has great potential to alleviate these barriers. Here, we advance these goals for marine turtles by generating high quality de novo blood transcriptome assemblies to characterize functional diversity and compare global transcriptional profiles between tissues, species, and foraging aggregations. RESULTS: We generated high quality blood transcriptome assemblies for hawksbill (Eretmochelys imbricata), loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) turtles. The functional diversity in assembled blood transcriptomes was comparable to those from more traditionally sampled tissues. A total of 31.3% of orthogroups identified were present in all four species, representing a core set of conserved genes expressed in blood and shared across marine turtle species. We observed strong species-specific expression of these genes, as well as distinct transcriptomic profiles between green turtle foraging aggregations that inhabit areas of greater or lesser anthropogenic disturbance. CONCLUSIONS: Obtaining global gene expression data through non-lethal, minimally invasive sampling can greatly expand the applications of RNA-sequencing in protected long-lived species such as marine turtles. The distinct differences in gene expression signatures between species and foraging aggregations provide insight into the functional genomics underlying the diversity in this ancient vertebrate lineage. The transcriptomic resources generated here can be used in further studies examining the evolutionary ecology and anthropogenic impacts on marine turtles.


Assuntos
Tartarugas , Animais , Sequência de Bases , Especificidade da Espécie , Transcriptoma , Tartarugas/genética
2.
Glob Chang Biol ; 27(13): 3009-3034, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33605004

RESUMO

Tropicalization is a term used to describe the transformation of temperate ecosystems by poleward-moving tropical organisms in response to warming temperatures. In North America, decreases in the frequency and intensity of extreme winter cold events are expected to allow the poleward range expansion of many cold-sensitive tropical organisms, sometimes at the expense of temperate organisms. Although ecologists have long noted the critical ecological role of winter cold temperature extremes in tropical-temperate transition zones, the ecological effects of extreme cold events have been understudied, and the influence of warming winter temperatures has too often been left out of climate change vulnerability assessments. Here, we examine the influence of extreme cold events on the northward range limits of a diverse group of tropical organisms, including terrestrial plants, coastal wetland plants, coastal fishes, sea turtles, terrestrial reptiles, amphibians, manatees, and insects. For these organisms, extreme cold events can lead to major physiological damage or landscape-scale mass mortality. Conversely, the absence of extreme cold events can foster population growth, range expansion, and ecological regime shifts. We discuss the effects of warming winters on species and ecosystems in tropical-temperate transition zones. In the 21st century, climate change-induced decreases in the frequency and intensity of extreme cold events are expected to facilitate the poleward range expansion of many tropical species. Our review highlights critical knowledge gaps for advancing understanding of the ecological implications of the tropicalization of temperate ecosystems in North America.


Assuntos
Mudança Climática , Ecossistema , Animais , América do Norte , Estações do Ano , Temperatura
3.
Glob Chang Biol ; 23(11): 4556-4568, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28378354

RESUMO

Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the importance of region-wide collaborations.


Assuntos
Tartarugas/crescimento & desenvolvimento , Animais , Oceano Atlântico , Tamanho Corporal , Ecologia , Temperatura
4.
Ecol Appl ; 26(7): 2145-2155, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755731

RESUMO

Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal populations and ecological communities. Here, we use long-term biological tissue records to provide pre-disaster data for a vulnerable marine organism. Keratin samples from the carapace of loggerhead sea turtles record the foraging history for up to 18 years, allowing us to evaluate the effect of the oil spill on sea turtle foraging patterns. Samples were collected from 76 satellite-tracked adult loggerheads in 2011 and 2012, approximately one to two years after the spill. Of the 10 individuals that foraged in areas exposed to surface oil, none demonstrated significant changes in foraging patterns post spill. The observed long-term fidelity to foraging sites indicates that loggerheads in the northern Gulf of Mexico likely remained in established foraging sites, regardless of the introduction of oil and chemical dispersants. More research is needed to address potential long-term health consequences to turtles in this region. Mobile marine organisms present challenges for researchers to monitor effects of environmental disasters, both spatially and temporally. We demonstrate that biological tissues can reveal long-term histories of animal behavior and provide critical pre-disaster baselines following an anthropogenic disturbance or natural disaster.


Assuntos
Distribuição Animal , Biomarcadores Ambientais , Poluição por Petróleo , Tartarugas/fisiologia , Animais , Isótopos de Carbono , Feminino , Golfo do México , Isótopos de Nitrogênio , Pele/química , Pele/patologia
5.
Ecol Appl ; 25(2): 320-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26263657

RESUMO

Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: (1) a nominal approach through discriminant analysis and (2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively determine geographic origin for large numbers of untracked individuals. Regular monitoring of sea turtle nesting aggregations with stable isotope sampling can be used to fill critical data gaps regarding habitat use and migration patterns. Probabilistic assignment to origin with isoscapes has not been previously used in the marine environment, but the methods presented here could also be applied to other migratory marine species.


Assuntos
Migração Animal/fisiologia , Carbono/química , Nitrogênio/química , Tartarugas/fisiologia , Distribuição Animal , Sistemas de Identificação Animal , Animais , Isótopos de Carbono , Comportamento de Nidação , Isótopos de Nitrogênio , Astronave , Fatores de Tempo
6.
Sci Total Environ ; 912: 169434, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104820

RESUMO

Sea turtles, in comparison with marine mammals, sea birds, and fishes, are the most affected by microplastics in terms of number of individuals impacted and concentration within each organism. The ubiquitous nature and persistence of microplastics in the environment further compromises sea turtles as many species are currently vulnerable, endangered, or critically endangered. The objective of this study was to quantify microplastic contamination in unviable loggerhead sea turtle eggs (Caretta caretta). Eggs were collected from seven locations along the northwest coast of Florida. A total of 70 nests and 350 eggs were examined. Microplastics (n = 510) were found in undeveloped loggerhead sea turtle eggs across all seven sites, suggesting that maternal transference and/or exchange between the internal and external environment were possible. The frequency found was 7.29 ± 1.83 microplastic pieces per nest and 1.46 ± 0.01 per egg. Microplastics were categorized based on color, shape, size, and type of polymer. The predominant color of microplastics were blue/green (n = 236), shape was fibers (n = 369), and length was 10-300 µm (n = 191). Identified fragments, films, beads and one foam (n = 187) had the most common area of 1-10 µm2 (n = 45). Micro-Fourier Transform Infrared (µ-FTIR) spectroscopy analysis demonstrated that polyethylene (11 %) and polystyrene (7 %) were the main polymer types. For the first time microplastics were found in unviable, undeveloped loggerhead sea turtle eggs collected in northwest Florida. This work provides insight into the distribution patterns of microplastic pollutants in loggerhead sea turtle eggs and may extend to other species worldwide.


Assuntos
Poluentes Ambientais , Tartarugas , Humanos , Animais , Microplásticos , Plásticos , Florida , Mamíferos
7.
Mov Ecol ; 12(1): 40, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816732

RESUMO

BACKGROUND: Individual variation in movement strategies of foraging loggerhead turtles have been documented on the scale of tens to hundreds of kilometers within single ocean basins. Use of different strategies among individuals may reflect variations in resources, predation pressure or competition. It is less common for individual turtles to use different foraging strategies on the scale of kilometers within a single coastal bay. We used GPS tags capable of back-filling fine-scale locations to document movement patterns of loggerhead turtles in a coastal bay in Northwest Florida, U.S.A. METHODS: Iridium-linked GPS tags were deployed on loggerhead turtles at a neritic foraging site in Northwest Florida. After filtering telemetry data, point locations were transformed to movement lines and then merged with the original point file to define travel paths and assess travel speed. Home ranges were determined using kernel density function. Diurnal behavioral shifts were examined by examining turtle movements compared to solar time. RESULTS: Of the 11 turtles tagged, three tracked turtles remained in deep (~ 6 m) water for almost the entire tracking period, while all other turtles undertook movements from deep water locations, located along edges and channels, to shallow (~ 1-2 m) shoals at regular intervals and primarily at night. Three individuals made short-term movements into the Gulf of Mexico when water temperatures dropped, and movement speeds in the Gulf were greater than those in the bay. Turtles exhibited a novel behavior we termed drifting. CONCLUSIONS: This study highlighted the value provided to fine-scale movement studies for species such as sea turtles that surface infrequently by the ability of these GPS tags to store and re-upload data. Future use of these tags at other loggerhead foraging sites, and concurrent with diving and foraging data, would provide a powerful tool to better understand fine-scale movement patterns of sea turtles.

9.
Ecol Evol ; 13(8): e10448, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37608924

RESUMO

Globally, six of the seven sea turtle species are threatened or endangered and as such, monitoring reproductive activity for these species is necessary for effective population recovery. Remote beaches provide a challenge to conducting these surveys, which often results in data gaps that can hamper management planning. Throughout the summer of 2022, aerial surveys were conducted over the Chandeleur Islands in the Gulf of Mexico. Turtle crawls were photographed for subsequent review by 10 expert observers. Whenever possible, ground surveys were conducted, and samples of unhatched eggs or dead hatchlings were collected. A summary of historic reports of sea turtle nesting activity at this site was also compiled. On 11 days between May 4, 2022, and July 30, 2022, photographs of 55 potential sea turtle crawls were taken. Observers identified 54 of those as being made by a sea turtle. There was high-to-moderate certainty that 16 of those crawls were nests, that 14 were made by loggerheads, and that two were made by Kemp's ridleys. Observers were least certain of species identification when surveys were conducted during rainy weather. Genetic analyses based on mitochondrial and nuclear DNA were conducted on samples from five nests and those analyses confirmed that three nests were laid by Kemp's ridleys and two were laid by loggerheads. Historic records from the Chandeleur Islands substantiate claims that the Chandeleurs have supported sea turtle nesting activity for decades; however, the consistency of this activity remains unknown. Our aerial surveys, particularly when coupled with imaging, were a useful tool for documenting nesting activity on these remote islands. Future monitoring programs at this site could benefit from a standardized aerial survey program with a seaplane so trends in nesting activity could be determined particularly as the beach undergoes restoration.

10.
Ecol Evol ; 12(1): e8473, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127015

RESUMO

Capture vulnerability of commercial and recreational fishes has been associated with behavioral, morphological, and life-history traits; however, relationships with non-target species, such as sea turtles, have not been adequately studied. We examined species composition, timing of captures, morphological variables including body size and head width, and body condition of sea turtles captured from a recreational fishing pier in the northern Gulf of Mexico and of sea turtles captured in the waters adjacent to the pier. From 2014 to 2019, 148 net captures and 112 pier captures of three sea turtle species were documented. Green turtles were captured most frequently in the net and on the pier. Turtles captured from the pier were larger than those captured in the net. There was no difference in head width between net-caught and pier-caught turtles; however, small sample sizes limited those comparisons. The body condition index was lower for pier-caught than net-caught Kemp';s ridleys but did not differ with green turtles or loggerheads. Differences were also observed in the timing of capture on the pier as compared to in the net. Finally, the relationship between size, body condition, and pier-capture vulnerability suggests these are complex interactions. Mortality of sea turtles captured from fishing piers could be selecting against bolder individuals, which may result in changes in sea turtle population demographics over a long time period.

11.
Sci Rep ; 11(1): 1577, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452383

RESUMO

Natural disturbances are an important driver of population dynamics. Because it is difficult to observe wildlife during these events, our understanding of the strategies that species use to survive these disturbances is limited. On October 10, 2018, Hurricane Michael made landfall on Florida's northwest coast. Using satellite and acoustic telemetry, we documented movements of 6 individual turtles: one loggerhead sea turtle, one Kemp's ridley sea turtle, three green sea turtles and one diamondback terrapin, in a coastal bay located less than 30 km from hurricane landfall. Post-storm survival was confirmed for all but the Kemp's ridley; the final condition of that individual remains unknown. No obvious movements were observed for the remaining turtles however the loggerhead used a larger home range in the week after the storm. This study highlights the resiliency of turtles in response to extreme weather conditions. However, long-term impacts to these species from habitat changes post-hurricane are unknown.


Assuntos
Comportamento Animal/fisiologia , Desastres Naturais/mortalidade , Tartarugas/fisiologia , Distribuição Animal/fisiologia , Animais , Animais Selvagens , Tempestades Ciclônicas/estatística & dados numéricos , Ecossistema , Florida , Golfo do México , Movimento/fisiologia
12.
PLoS One ; 14(8): e0220372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31390354

RESUMO

The relationship between dive behavior and oceanographic conditions is not well understood for marine predators, especially sea turtles. We tagged loggerhead turtles (Caretta caretta) with satellite-linked depth loggers in the Gulf of Mexico, where there is a minimal amount of dive data for this species. We tested for associations between four measurements of dive behavior (total daily dive frequency, frequency of dives to the bottom, frequency of long dives and time-at-depth) and both oceanographic conditions (sea surface temperature [SST], net primary productivity [NPP]) and behavioral mode (inter-nesting, migration, or foraging). From 2011-2013 we obtained 26 tracks from 25 adult female loggerheads tagged after nesting in the Gulf of Mexico. All turtles remained in the Gulf of Mexico and spent about 10% of their time at the surface (10% during inter-nesting, 14% during migration, 9% during foraging). Mean total dive frequency was 41.9 times per day. Most dives were ≤ 25 m and between 30-40 min. During inter-nesting and foraging, turtles dived to the bottom 95% of days. SST was an important explanatory variable for all dive patterns; higher SST was associated with more dives per day, more long dives and more dives to the seafloor. Increases in NPP were associated with more long dives and more dives to the bottom, while lower NPP resulted in an increased frequency of overall diving. Longer dives occurred more frequently during migration and a higher proportion of dives reached the seafloor during foraging when SST and NPP were higher. Our study stresses the importance of the interplay between SST and foraging resources for influencing dive behavior.


Assuntos
Comportamento Animal , Mergulho , Temperatura , Tartarugas , Migração Animal , Animais , Comportamento Alimentar , Feminino , Golfo do México , Comportamento de Nidação , Fatores de Tempo
14.
Ecol Evol ; 8(24): 12656-12669, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619571

RESUMO

Animals co-occurring in a region (sympatry) may use the same habitat (syntopy) within that region. A central aim in ecology is determining what factors drive species distributions (i.e., abiotic conditions, dispersal limitations, and/or biotic interactions). Assessing the degree of biotic interactions can be difficult for species with wide ranges at sea. This study investigated the spatial ecology of two sea turtle species that forage on benthic invertebrates in neritic GoM waters: Kemp's ridleys (Lepidochelys kempii) and loggerheads (Caretta caretta). We used satellite tracking and modeled behavioral modes, then calculated individual home ranges, compared foraging areas, and determined extent of co-occurrence. Using six environmental variables and principal component analysis, we assessed similarity of chosen foraging sites. We predicted foraging location (eco-region) based on species, nesting site, and turtle size. For 127 turtles (64 Kemp's ridleys, 63 loggerheads) tracked from 1989 to 2013, foraging home ranges were nine to ten times larger for Kemp's ridleys than for loggerheads. Species intersected off all U.S. coasts and the Yucatán Peninsula, but co-occurrence areas were small compared to species' distributions. Kemp's ridley foraging home ranges were concentrated in the northern GoM, whereas those for loggerheads were concentrated in the eastern GoM. The two species were different in all habitat variables compared (latitude, longitude, distance to shore, net primary production, mean sea surface temperature, and bathymetry). Nesting site was the single dominant variable that dictated foraging ecoregion. Although Kemp's ridleys and loggerheads may compete for resources, the separation in foraging areas, significant differences in environmental conditions, and importance of nesting location on ecoregion selection (i.e., dispersal ability) indicate that adult females of these species do not interact greatly during foraging and that dispersal and environmental factors more strongly determine their distributions. These species show sympatry in this region but evidence for syntopy was rare.

15.
PLoS One ; 12(5): e0177642, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28493980

RESUMO

The gut microbiome of herbivorous animals consists of organisms that efficiently digest the structural carbohydrates of ingested plant material. Green turtles (Chelonia mydas) provide an interesting model of change in these microbial communities because they undergo a pronounced shift from a surface-pelagic distribution and omnivorous diet to a neritic distribution and herbivorous diet. As an alternative to direct sampling of the gut, we investigated the cloacal microbiomes of juvenile green turtles before and after recruitment to neritic waters to observe any changes in their microbial community structure. Cloacal swabs were taken from individual turtles for analysis of the 16S rRNA gene sequences using Illumina sequencing. One fecal sample was also obtained, allowing for a preliminary comparison with the bacterial community of the cloaca. We found significant variation in the juvenile green turtle bacterial communities between pelagic and neritic habitats, suggesting that environmental and dietary factors support different bacterial communities in green turtles from these habitats. This is the first study to characterize the cloacal microbiome of green turtles in the context of their ontogenetic shifts, which could provide valuable insight into the origins of their gut bacteria and how the microbial community supports their shift to herbivory.


Assuntos
Ecossistema , Microbiota , Tartarugas/microbiologia , Animais , Biodiversidade , Tamanho Corporal , Cloaca/microbiologia , Análise por Conglomerados , Geografia , Golfo do México , Análise de Sequência de RNA
16.
PLoS One ; 9(7): e103453, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25076053

RESUMO

Northern Gulf of Mexico (NGoM) loggerheads (Caretta caretta) make up one of the smallest subpopulations of this threatened species and have declining nest numbers. We used satellite telemetry and a switching state-space model to identify distinct foraging areas used by 59 NGoM loggerheads tagged during 2010-2013. We tagged turtles after nesting at three sites, 1 in Alabama (Gulf Shores; n = 37) and 2 in Florida (St. Joseph Peninsula; n = 20 and Eglin Air Force Base; n = 2). Peak migration time was 22 July to 9 August during which >40% of turtles were in migration mode; the mean post-nesting migration period was 23.0 d (±13.8 d SD). After displacement from nesting beaches, 44 turtles traveled to foraging sites where they remained resident throughout tracking durations. Selected foraging locations were variable distances from tagging sites, and in 5 geographic regions; no turtles selected foraging sites outside the Gulf of Mexico (GoM). Foraging sites delineated using 50% kernel density estimation were located a mean distance of 47.6 km from land and in water with mean depth of -32.5 m; other foraging sites, delineated using minimum convex polygons, were located a mean distance of 43.0 km from land and in water with a mean depth of -24.9 m. Foraging sites overlapped with known trawling activities, oil and gas extraction activities, and the footprint of surface oiling during the 2010 Deepwater Horizon oil spill (n = 10). Our results highlight the year-round use of habitats in the GoM by loggerheads that nest in the NGoM. Our findings indicate that protection of females in this subpopulation requires both international collaborations and management of threats that spatially overlap with distinct foraging habitats.


Assuntos
Conservação dos Recursos Naturais , Tartarugas/fisiologia , Migração Animal , Animais , Ecossistema , Feminino , Golfo do México
17.
PLoS One ; 8(7): e66921, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23843971

RESUMO

Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0 ± 930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of -31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of -15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km(2) (50% KDEs, n = 10) and 741.4 km(2) (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.


Assuntos
Migração Animal , Ecossistema , Comportamento de Nidação , Tartarugas/fisiologia , Animais , Meio Ambiente , Feminino , Geografia , Golfo do México , Densidade Demográfica , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA