Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 23(17): 22628-35, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368230

RESUMO

Surface grating couplers are fundamental components in chip-based photonic devices to couple light between photonic integrated circuits and optical fibers. In this work, we report on a grating coupler with sub-decibel experimental coupling efficiency using a single etch process in a standard 220-nm silicon-on-insulator (SOI) platform. We specifically demonstrate a subwavelength metamaterial refractive index engineered nanostructure with backside metal reflector, with the measured peak fiber-chip coupling efficiency of -0.69 dB (85.3%) and 3 dB bandwidth of 60 nm. This is the highest coupling efficiency hitherto experimentally achieved for a surface grating coupler implemented in 220-nm SOI platform.

2.
Opt Express ; 20(16): 18356-61, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23038386

RESUMO

In this paper, athermal silicon waveguides using bridged subwavelength grating (BSWG) structures are proposed and investigated. The realization of temperature-independent BSWG waveguides for both polarizations is demonstrated numerically and experimentally. SU-8 polymer is used as the cladding material to compensate for the positive thermo-optic (TO) coefficient (dn/dT) of silicon. We investigate the dependence of the effective TO coefficient of BSWG waveguides on both the bridge width and grating duty cycle. The BSWG waveguides have a width of 490 nm, a height of 260 nm, and a grating pitch of 250 nm. Athermal behavior is achieved for both the transverse-magnetic (TM) and the transverse-electric (TE) polarized light for a variety of bridge width and duty cycle combinations. Furthermore, the BSWGs can be designed to be athermal for both TE and TM polarization simultaneously.

3.
Opt Lett ; 35(15): 2526-8, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20680046

RESUMO

We use subwavelength gratings (SWGs) to engineer the refractive index in microphotonic waveguides, including practical components such as input couplers and multiplexer circuits. This technique allows for direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6-3.5 by lithographic patterning. We demonstrate two experimental examples of refractive index engineering, namely, a microphotonic fiber-chip coupler with a coupling loss as small as -0.9dB and minimal wavelength dependence and a planar waveguide multiplexer with SWG nanostructure, which acts as a slab waveguide for light diffracted by the grating, while at the same time acting as a lateral cladding for the strip waveguide. This yields an operation bandwidth of 170nm for a device size of only approximately 160microm x100microm.

4.
Opt Express ; 15(6): 3149-55, 2007 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19532553

RESUMO

A ring resonator in SOI photonic wire waveguides is demonstrated using a compact MMI coupler with 3mum x 9 mum footprint as the coupling element. We achieved high bandwidth of 0.25 nm, and a quality factor Q of ~ 6000 for rings with a radius of 50 mum. Unlike directional coupler based rings, these resonators have a wavelength independent Q and extinction ratio over more than 30 nm wavelength range, and there is no loss penalty for increasing the bandwidth. Compared to their directional coupler based counterparts, these resonators also have less demanding fabrication requirements and are compatible with high speed signal processing and optical delay lines.

5.
Opt Lett ; 33(22): 2647-9, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19015696

RESUMO

We report a compact high-resolution arrayed waveguide grating (AWG) interrogator system designed to measure the relative wavelength spacing between two individual resonances of a tilted fiber Bragg grating (TFBG) refractometer. The TFBG refractometer benefits from an internal wavelength and power reference provided by the core mode reflection resonance that can be used to determine cladding mode perturbations with high accuracy. The AWG interrogator is a planar waveguide device fabricated on a silicon-on-insulator platform, having 50 channels with a 0.18 nm wavelength separation and a footprint of 8 mmx8 mm. By overlaying two adjacent interference orders of the AWG we demonstrate simultaneous monitoring of two widely separated resonances in real time with high wavelength resolution. The standard deviation of the measured wavelength shifts is 1.2 pm, and it is limited by the resolution of the optical spectrum analyzer used for the interrogator calibration measurements.


Assuntos
Fibras Ópticas , Refratometria/instrumentação , Silício/química , Transdutores , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA