Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 99(19): 8225-34, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26051674

RESUMO

A hybrid airlift reactor was adopted to retain aerobic granules in the reactor successfully for continuous operation. It was found that aerobic granules maintained excellent physical structure stability in the continuous-flow reactor with reactor performance as good as batch operation. However, flocs appeared after batch operation was switched to continuous operation, and chemical oxygen demand (COD) in the wastewater was thus removed by co-existed granules and flocs in the reactor. Furthermore, excessive precipitation of CaCO3 as needled shaped aragonite in the continuous aerobic granular sludge reactor was observed, which led to the further enhancement of settling ability of granules with sludge volume index (SVI) reduction from 32 to 2 ml g(-1) but specific oxygen utilization rate (SOUR) decrease from 61 to 23 mg O2 g(-1) MLVSS h(-1). Thus, apart from the physical structure stability, bioactivity stability of granules should be also considered as an important parameter to evaluate the continuous operation of aerobic granular sludge. Furthermore, the decrease in granule polysaccharide content implied that protein was more important for aragonite precipitation. The excessive aragonite precipitation in the continuous-flow reactor could be due to the competition between flocs and granules. In addition, the degradation of polysaccharide in aerobic granules under a continuous-flow mode may also contribute to excessive aragonite precipitation.


Assuntos
Carbonato de Cálcio/química , Esgotos/química , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Precipitação Química , Águas Residuárias/química
2.
Carbohydr Res ; 501: 108276, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33662813

RESUMO

With the development of dye and printing, production wastewater has become one of the most primary pollution sources of water and soil pollution. Most of the dyes are toxic substances, which have the "three-way" effect of carcinogenic, teratogenic and mutagenic. Therefore, it is a very difficult but significant issue to deal with the dye in the wastewater. Here, we report a study on low-cost, high-capacity hydrogels that remove water-soluble dyes. The hydrogel is prepared by crosslinking the ß-cyclodextrin and functional monomer: acrylamido and 2-acrylamide-2-methylpropane sulfonic acid by aqueous solution polymerization, meanwhile, alkaline hydrolysis is also an important step for adsorption performance. After alkaline hydrolysis, the amide and sulfonic groups in the hydrogel were converted into carboxylate and sulfonate, which was beneficial to the adsorption of cationic dyes. This polymer could remove 96.58% methylene blue (400 mg/L) and only requires 0.02 wt%. Its maximum adsorption capacity for methylene blue could reach 2638.22 mg/g under equilibrium condition. It is the most powerful adsorbent used to treat dye wastewater, according to the report. It also provides some references for hydrogel treatment of dye wastewater.


Assuntos
Hidrogéis/química , Azul de Metileno/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , beta-Ciclodextrinas/química , Adsorção , Azul de Metileno/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA