Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(8)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37963407

RESUMO

Feroxyhite (δ-FeOOH) nanomaterials were successfully synthesized through the atmospheric AC microplasma method at room temperature from ferrous sulfate aqueous solutions. Various syntheses conditions, including electric voltage, electric field strength, ferrous concentration, hydrogen peroxide concentration, and reaction duration, were systematically investigated. The synthesized products were characterized through x-ray diffraction, UV-vis absorption spectroscopy, photoluminescence spectroscopy, infra-red spectroscopy, and electron microscopy. The bandgap of the produced materials were strongly dependent of the ferrous concentration while the product ratio was dependent on all experimental conditions. The synthesis mechanism was thoroughly discussed. The synthesized nanomaterials were amorphous nanospheres, showing superparamagnetic properties at room temperature. The synthesized oxyhydroxide is a potential photovoltaic material besides its reported applications in photocatalysts and supercapacitors. The application of this synthesis technique could be extended to synthesize other oxy-hydroxide nanomaterials for renewable energy applications facilely, scalablely, cost-effectively, and environmentally.

2.
Molecules ; 28(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37959802

RESUMO

Ever since the commencement of the Industrial Revolution in Great Britain in the mid-18th century, the annual global energy consumption from various fossil fuels, encompassing wood, coal, natural gas, and petroleum, has demonstrated an exponential surge over the past four centuries [...].

3.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241892

RESUMO

Magnetic tunnel junctions (MTJs) have been widely utilized in sensitive sensors, magnetic memory, and logic gates due to their tunneling magnetoresistance. Moreover, these MTJ devices have promising potential for renewable energy generation and storage. Compared with Si-based devices, MTJs are more tolerant to electromagnetic radiation. In this review, we summarize the functionalities of MgO-based MTJ devices under different electromagnetic irradiation environments, with a focus on gamma-ray radiation. We explore the effects of these radiation exposures on the MgO tunnel barriers, magnetic layers, and interfaces to understand the origin of their tolerance. This review enhances our knowledge of the radiation tolerance of MgO-based MTJs, improves the design of these MgO-based MTJ devices with better tolerances, and provides information to minimize the risks of irradiation under various irradiation environments. This review starts with an introduction to MTJs and irradiation backgrounds, followed by the fundamental properties of MTJ materials, such as the MgO barrier and magnetic layers. Then, we review and discuss the MTJ materials and devices' radiation tolerances under different irradiation environments, including high-energy cosmic radiation, gamma-ray radiation, and lower-energy electromagnetic radiation (X-ray, UV-vis, infrared, microwave, and radiofrequency electromagnetic radiation). In conclusion, we summarize the radiation effects based on the published literature, which might benefit material design and protection.

4.
Proc Natl Acad Sci U S A ; 113(29): E4125-32, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27385824

RESUMO

Complex Zintl phases, especially antimony (Sb)-based YbZn0.4Cd1.6Sb2 with figure-of-merit (ZT) of ∼1.2 at 700 K, are good candidates as thermoelectric materials because of their intrinsic "electron-crystal, phonon-glass" nature. Here, we report the rarely studied p-type bismuth (Bi)-based Zintl phases (Ca,Yb,Eu)Mg2Bi2 with a record thermoelectric performance. Phase-pure EuMg2Bi2 is successfully prepared with suppressed bipolar effect to reach ZT ∼ 1. Further partial substitution of Eu by Ca and Yb enhanced ZT to ∼1.3 for Eu0.2Yb0.2Ca0.6Mg2Bi2 at 873 K. Density-functional theory (DFT) simulation indicates the alloying has no effect on the valence band, but does affect the conduction band. Such band engineering results in good p-type thermoelectric properties with high carrier mobility. Using transmission electron microscopy, various types of strains are observed and are believed to be due to atomic mass and size fluctuations. Point defects, strain, dislocations, and nanostructures jointly contribute to phonon scattering, confirmed by the semiclassical theoretical calculations based on a modified Debye-Callaway model of lattice thermal conductivity. This work indicates Bi-based (Ca,Yb,Eu)Mg2Bi2 is better than the Sb-based Zintl phases.

5.
Proc Natl Acad Sci U S A ; 113(48): 13576-13581, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27856743

RESUMO

Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 µW⋅cm-1⋅K-2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm-2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.

7.
Proc Natl Acad Sci U S A ; 111(30): 10966-71, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25030447

RESUMO

Extraction of intracellular molecules is crucial to the study of cellular signal pathways. Disruption of the cellular membrane remains the established method to release intracellular contents, which inevitably terminates the time course of biological processes. Also, conventional laboratory extractions mostly use bulky materials that ignore the heterogeneity of each cell. In this work, we developed magnetized carbon nanotubes that can be sneaked into and out of cell bodies under a magnetic force. Using a testing model with overexpression of GFP, the nanotubes successfully transported the intracellular GFP out at the single-cell level. The confined nanoscale invasiveness did not change cell viability or proliferation. This study presents the proof of concept of a previously unidentified real-time and single-cell approach to investigate cellular biology, signal messengers, and therapeutic effects with nanomaterials.


Assuntos
Modelos Biológicos , Nanotubos , Transdução de Sinais/fisiologia , Transporte Biológico Ativo/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos
8.
Proc Natl Acad Sci U S A ; 110(33): 13261-6, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23901106

RESUMO

From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.


Assuntos
Irídio/química , Modelos Químicos , Nanoestruturas/química , Telúrio/química , Temperatura , Compostos de Estanho/química , Condutividade Elétrica , Teste de Materiais , Microscopia Eletrônica de Varredura , Difração de Raios X
9.
Nano Lett ; 14(9): 5016-20, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25079115

RESUMO

We have studied the thermoelectric properties of nanostructured YbAgCu4 materials. A high power factor of ∼131 µW cm(-1) K(-2) has been obtained at 22 K for nanostructured samples prepared by ball milling the arc melted ingot into nanopowder and hot pressing the nanopowder. The implementation of nanostructuring method decreased the thermal conductivity at 42 K by 30-50% through boundary scattering comparing with the previously reported value of polycrystalline YbAgCu4. A peak dimensionless thermoelectric figure-of-merit, ZT, of 0.11 has been achieved at 42 K, which may find potential applications for cryogenic cooling below 77 K. The nanostructuring approach can be extended to other heavy Fermion materials to achieve high power factor and low thermal conductivity and ultimately higher ZT.

10.
Phys Chem Chem Phys ; 16(34): 18170-5, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25052588

RESUMO

We have synthesized Ni compensated Ce and Nd double filled p-type skutterudites CexNdxFe3.7Ni0.3Sb12 with x = 0.35, 0.40, 0.45, and 0.5 by a melting-quenching-annealing method. The samples were made by directly hot pressing the hand ground powder at 650 °C for 5 minutes at a pressure of about 80 MPa. Since Ni has two more electrons than Fe, a lower power factor and a stronger bipolar effect in thermal conductivity are expected at higher temperature. In the experiments, we have demonstrated that by suitably tuning the Fe-Ni ratio and filler concentration, we can achieve both a higher power factor (∼35 µW cm(-1) K(-2) at 535 °C) and a lower thermal conductivity (∼2.1 W m(-1) K(-1) at room temperature and ∼2.7 W m(-1) K(-1) at 535 °C) in Ce0.4Nd0.4Fe3.7Ni0.3Sb12. A peak thermoelectric figure-of-merit of ∼1.1 at 475 °C is achieved in Ce0.4Nd0.4Fe3.7Ni0.3Sb12.

11.
Nanomaterials (Basel) ; 14(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535702

RESUMO

High-entropy alloys (HEAs) are a class of metal alloys consisting of four or more molar equal or near-equal elements. HEA nanomaterials have garnered significant interest due to their wide range of applications, such as electrocatalysis, welding, and brazing. Their unique multi-principle high-entropy effect allows for the tailoring of the alloy composition to facilitate specific electrochemical reactions. This study focuses on the synthesis of high-purity HEA nanoparticles using the method of femtosecond laser ablation synthesis in liquid. The use of ultrashort energy pulses in femtosecond lasers enables uniform ablation of materials at significantly lower power levels compared to longer pulse or continuous pulse lasers. We investigate how various femtosecond laser parameters affect the morphology, phase, and other characteristics of the synthesized nanoparticles. An innovative aspect of our solution is its ability to rapidly generate multi-component nanoparticles with a high fidelity as the input multi-component target material at a significant yielding rate. Our research thus focuses on a novel synthesis of high-entropy alloying CuCoMn1.75NiFe0.25 nanoparticles. We explore the characterization and unique properties of the nanoparticles and consider their electrocatalytic applications, including high power density aluminum air batteries, as well as their efficacy in the oxygen reduction reaction (ORR). Additionally, we report a unique nanowire fabrication phenomenon achieved through nanojoining. The findings from this study shed light on the potential of femtosecond laser ablation synthesis in liquid (FLASiL) as a promising technique for producing high-purity HEA nanoparticles.

12.
ACS Appl Mater Interfaces ; 16(2): 2120-2139, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170561

RESUMO

The process of bonding to dentin is complex and dynamic, greatly impacting the longevity of dental restorations. The tooth/dental material interface is degraded by bacterial acids, matrix metalloproteinases (MMPs), and hydrolysis. As a result, bonded dental restorations face reduced longevity due to adhesive interfacial breakdown, leading to leakage, tooth pain, recurrent caries, and costly restoration replacements. To address this issue, we synthesized and characterized a multifunctional magnetic platform, CHX@SiQuac@Fe3O4@m-SiO2, to provide several beneficial functions. The platform comprises Fe3O4 microparticles and chlorhexidine (CHX) encapsulated within mesoporous silica, which was silanized by an antibacterial quaternary ammonium silane (SiQuac). This platform simultaneously targets bacterial inhibition, stability of the hybrid layer, and enhanced filler infiltration by magnetic motion. Comprehensive experiments include X-ray diffraction, FT-IR, VSM, EDS, N2 adsorption-desorption (BET), transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and UV-vis spectroscopy. Then, CHX@SiQuac@Fe3O4@m-SiO2 was incorporated into an experimental adhesive resin for dental bonding restorations, followed by immediate and long-term antibacterial assessment, cytotoxicity evaluation, and mechanical and bonding performance. The results confirmed the multifunctional nature of CHX@SiQuac@Fe3O4@m-SiO2. This work outlined a roadmap for (1) designing and tuning an adhesive formulation containing the new platform CHX@SiQuac@Fe3O4@m-SiO2; (2) assessing microtensile bond strength to dentin using a clinically relevant model of simulated hydrostatic pulpal pressure; and (3) investigating the antibacterial outcome performance of the particles when embedded into the formulated adhesives over time. The results showed that at 4 wt % of CHX@SiQuac@Fe3O4@m-SiO2-doped adhesive under the guided magnetic field, the bond strength increased by 28%. CHX@SiQuac@Fe3O4@m-SiO2 enhanced dentin adhesion in the magnetic guide bonding process without altering adhesive properties or causing cytotoxicity. This finding presents a promising method for strengthening the tooth/dental material interface's stability and extending the bonded restorations' lifespan.


Assuntos
Silanos , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Clorexidina/química , Antibacterianos/farmacologia , Cimentos Dentários/farmacologia , Materiais Dentários , Fenômenos Magnéticos , Dentina , Teste de Materiais , Resistência à Tração
13.
J Nanosci Nanotechnol ; 12(4): 3101-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849071

RESUMO

Long beta-Ga2O3 crystalline nanowires are synthesized on patterned silicon substrates using chemical vapor deposition technique. Advanced electron microscopy indicates that the as-grown beta-Ga2O3 nanowires are consisted of poly-crystalline (Co, Ga)O tips and straight crystalline beta-Ga2O3 stems. The catalytic cobalt not only locates at the nanowire tips but diffuses into beta-Ga2O3 nanowire stems several ten nanometers. A solid diffusion growth mechanism is proposed based on the spatial elemental distribution along the beta-Ga2O3 nanowires at nanoscale.

14.
Nano Lett ; 11(6): 2225-30, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21553899

RESUMO

We introduce the concept of modulation doping in three-dimensional nanostructured bulk materials to increase the thermoelectric figure of merit. Modulation-doped samples are made of two types of nanograins (a two-phase composite), where dopants are incorporated only into one type. By band engineering, charge carriers could be separated from their parent grains and moved into undoped grains, which would result in enhanced mobility of the carriers in comparison to uniform doping due to a reduction of ionized impurity scattering. The electrical conductivity of the two-phase composite can exceed that of the individual components, leading to a higher power factor. We here demonstrate the concept via experiment using composites made of doped silicon nanograins and intrinsic silicon germanium grains.


Assuntos
Boro/química , Germânio/química , Nanocompostos/química , Silício/química , Condutividade Elétrica , Propriedades de Superfície , Temperatura
15.
Nano Lett ; 11(2): 556-60, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21186782

RESUMO

Half-Heuslers would be important thermoelectric materials due to their high temperature stability and abundance if their dimensionless thermoelectric figure of merit (ZT) could be made high enough. The highest peak ZT of a p-type half-Heusler has been so far reported about 0.5 due to the high thermal conductivity. Through a nanocomposite approach using ball milling and hot pressing, we have achieved a peak ZT of 0.8 at 700 °C, which is about 60% higher than the best reported 0.5 and might be good enough for consideration for waste heat recovery in car exhaust systems. The improvement comes from a simultaneous increase in Seebeck coefficient and a significant decrease in thermal conductivity due to nanostructures. The samples were made by first forming alloyed ingots using arc melting and then creating nanopowders by ball milling the ingots and finally obtaining dense bulk by hot pressing. Further improvement in ZT is expected when average grain sizes are made smaller than 100 nm.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Semicondutores , Cristalização/métodos , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Condutividade Térmica
16.
Nano Lett ; 10(9): 3373-8, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20672824

RESUMO

The peak dimensionless thermoelectric figure-of-merit (ZT) of Bi(2)Te(3)-based n-type single crystals is about 0.85 in the ab plane at room temperature, which has not been improved over the last 50 years due to the high thermal conductivity of 1.65 W m(-1) K(-1) even though the power factor is 47 x 10(-4) W m(-1) K(-2). In samples with random grain orientations, we found that the thermal conductivity can be decreased by making grain size smaller through ball milling and hot pressing, but the power factor decreased with a similar percentage, resulting in no gain in ZT. Reorienting the ab planes of the small crystals by repressing the as-pressed samples enhanced the peak ZT from 0.85 to 1.04 at about 125 degrees C, a 22% improvement, mainly due to the more increase on power factor than on thermal conductivity. Further improvement is expected when the ab plane of most of the small crystals is reoriented to the direction perpendicular to the press direction and grains are made even smaller.

17.
Acta Biomater ; 134: 337-347, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34303014

RESUMO

The limited durability of dentin bonding harshly shortens the lifespan of resin composites restorations. The controlled, dynamic movement of materials through non-contacting forces provides exciting opportunities in adhesive dentistry. We, herein, describe comprehensive investigations of a new dental adhesive with superparamagnetic iron oxide nanoparticles (SPIONs) sensitive to magnetic fields for bonding optimization. This contribution outlines a roadmap of (1) designing and tuning of an adhesive formulation containing SPIONs to enhance penetrability into etched dentin guided by magnetic-field; (2) employing a clinically relevant model of simulated hydrostatic pulpal pressure on the microtensile bond to dentin; and (3) investigating a potential antibacterial effect of the formulated adhesives, and their biocompatibility. SPION-concentration-dependency chemical and mechanical behavior was shown via the degree of conversion, ultimate tensile strength, and micro shear bond strength to dentin. The effects of SPIONs carried on a dental adhesive on the bonding strength to dentin are studied in depth by combining experiments with in vitro simulated model. The results show that under the guided magnetic field, 0.07 wt.% of SPIONs-doped adhesive increased the bond strength that surpasses the reduction caused by hydrostatic pulpal pressure. Using a magnetic guide workflow during the bonding procedures, SPIONs-doped adhesives improved dentin's adhesion without changing adhesives' physicochemical properties. This outcome addresses the key challenge of poor resin infiltration of dentin's conventional total etching during the bonding procedure. The real-time magnetic motion of dental adhesives may open new paths to enhance resin-based restorations' longevity. STATEMENT OF SIGNIFICANCE: In this study, dental adhesives containing superparamagnetic iron oxide nanoparticles (SPIONs) were developed to enhance penetrability into dentin guided by a magnetic field. The adhesives were screened for physical, chemical, antibacterial properties, and cytotoxicity. For the first time, simulated pulpal pressure was used concurrently with the magnetic field to simulate a clinical setting. This approach showed that it is feasible to overcome pulpal pressure jeopardization on bond strength when SPIONs and a magnetic field are applied. The magnetic-responsive adhesives had great potential to improve bond strength, opening new paths to enhance resin-based restorations' longevity without affecting adhesives' biological properties. The use of magnetic-responsive particles and magnetically assisted motion is a promising strategy to improve the sealing ability of dental adhesives.


Assuntos
Adesivos Dentinários , Cimentos de Resina , Resinas Compostas , Dentina , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos , Teste de Materiais
18.
ACS Nano ; 15(12): 19888-19904, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34878250

RESUMO

Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.


Assuntos
Cárie Dentária , Fotoquimioterapia , Antibacterianos/farmacologia , Biofilmes , Cárie Dentária/tratamento farmacológico , Humanos , Desenvolvimento Industrial , Fenômenos Magnéticos , Fármacos Fotossensibilizantes/farmacologia , Streptococcus mutans
19.
Sci Adv ; 7(6)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33547075

RESUMO

Metal-semiconductor transitions from changes in edge chirality from zigzag to armchair were observed in many nanoribbon materials, especially those based on honeycomb lattices. Here, this is generalized to bulk complex Zintl semiconductors, exemplified by Eu2ZnSb2 where the Zn vacancy ordering plays an essential role. Five Eu2ZnSb2 structural models are proposed to guide transmission electron microscopy imaging. Zigzag vacancy ordering models show clear metallicity, while the armchair models are semiconducting with indirect bandgaps that monotonously increase with the relative distances between neighboring ZnSb2 chains. Topological electronic structure changes based on cation ordering in a Zintl compound point toward tunable and possibly switchable topological behavior, since cations in these are often mobile. Thus, their orderings can often be adjusted by temperature, minor alloying, and other approaches. We explain the electronic structure of an interesting thermoelectric and point the way to previously unidentified types of topological electronic transitions in Zintl compounds.

20.
Inorg Chem ; 49(14): 6748-54, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20550139

RESUMO

This paper presents the synthesis of water-dissolvable Na(2)SO(4) nanowires and nanorods by a simple chemical reaction between CuSO(4) and NaBH(4) in ethylene glycol. By adjusting the pH and the monomer concentration, the aspect ratio and size of the Na(2)SO(4) nanowires could be tuned. Na(2)SO(4) nanorods, nanowhiskers, nanowires, and submicrorods were obtained. Optimal chemical potential is believed to be the dominant driving force for the growth of Na(2)SO(4) nanowires during the synthesis. We also demonstrated the Na(2)SO(4) nanotubes obtained by the electron beam radiolysis of Na(2)SO(4) nanowires. The mechanism of selective radiolysis is also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA