Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2310701, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733269

RESUMO

Magnetic navigation systems are used to precisely manipulate magnetically responsive materials enabling the realization of new minimally invasive procedures using magnetic medical devices. Their widespread applicability has been constrained by high infrastructure demands and costs. The study reports on a portable electromagnetic navigation system, the Navion, which is capable of generating a large magnetic field over a large workspace. The system is easy to install in hospital operating rooms and transportable through health care facilities, aiding in the widespread adoption of magnetically responsive medical devices. First, the design and implementation approach for the system are introduced and its performance is characterized. Next, in vitro navigation of different microrobot structures is demonstrated using magnetic field gradients and rotating magnetic fields. Spherical permanent magnets, electroplated cylindrical microrobots, microparticle swarms, and magnetic composite bacteria-inspired helical structures are investigated. The navigation of magnetic catheters is also demonstrated in two challenging endovascular tasks: 1) an angiography procedure and 2) deep navigation within the circle of Willis. Catheter navigation is demonstrated in a porcine model in vivo to perform an angiography under magnetic guidance.

2.
Adv Mater ; : e2402309, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780003

RESUMO

Soft materials play a crucial role in small-scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small-scale soft devices. In this study, microfluidics is leveraged to precisely control reaction-diffusion (RD) processes to generate multifunctional and compartmentalized calcium-cross-linkable alginate-based microfibers. Under RD conditions, sophisticated alginate-based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross-linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll-up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small-scale devices.

3.
Adv Mater ; 36(18): e2310084, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101447

RESUMO

Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA