Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mol Psychiatry ; 28(5): 2058-2070, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36750734

RESUMO

Despite loss of grey matter volume and emergence of distinct cognitive deficits in young adults diagnosed with schizophrenia, current treatments for schizophrenia do not target disruptions in late maturational reshaping of the prefrontal cortex. Iron, the most abundant transition metal in the brain, is essential to brain development and function, but in excess, it can impair major neurotransmission systems and lead to lipid peroxidation, neuroinflammation and accelerated aging. However, analysis of cortical iron biology in schizophrenia has not been reported in modern literature. Using a combination of inductively coupled plasma-mass spectrometry and western blots, we quantified iron and its major-storage protein, ferritin, in post-mortem prefrontal cortex specimens obtained from three independent, well-characterised brain tissue resources. Compared to matched controls (n = 85), among schizophrenia cases (n = 86) we found elevated tissue iron, unlikely to be confounded by demographic and lifestyle variables, by duration, dose and type of antipsychotic medications used or by copper and zinc levels. We further observed a loss of physiologic age-dependent iron accumulation among people with schizophrenia, in that the iron level among cases was already high in young adulthood. Ferritin, which stores iron in a redox-inactive form, was paradoxically decreased in individuals with the disorder. Such iron-ferritin uncoupling could alter free, chemically reactive, tissue iron in key reasoning and planning areas of the young-adult schizophrenia cortex. Using a prediction model based on iron and ferritin, our data provide a pathophysiologic link between perturbed cortical iron biology and schizophrenia and indicate that achievement of optimal cortical iron homeostasis could offer a new therapeutic target.


Assuntos
Esquizofrenia , Adulto Jovem , Humanos , Adulto , Ferro , Córtex Pré-Frontal , Ferritinas , Biologia
2.
Crit Care ; 27(1): 371, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828547

RESUMO

BACKGROUND: Mega-dose sodium ascorbate (NaAscorbate) appears beneficial in experimental sepsis. However, its physiological effects in patients with septic shock are unknown. METHODS: We conducted a pilot, single-dose, double-blind, randomized controlled trial. We enrolled patients with septic shock within 24 h of diagnosis. We randomly assigned them to receive a single mega-dose of NaAscorbate (30 g over 1 h followed by 30 g over 5 h) or placebo (vehicle). The primary outcome was the total 24 h urine output (UO) from the beginning of the study treatment. Secondary outcomes included the time course of the progressive cumulative UO, vasopressor dose, and sequential organ failure assessment (SOFA) score. RESULTS: We enrolled 30 patients (15 patients in each arm). The mean (95% confidence interval) total 24-h UO was 2056 (1520-2593) ml with placebo and 2948 (2181-3715) ml with NaAscorbate (mean difference 891.5, 95% confidence interval [- 2.1 to 1785.2], P = 0.051). Moreover, the progressive cumulative UO was greater over time on linear mixed modelling with NaAscorbate (P < 0.001). Vasopressor dose and SOFA score changes over time showed faster reductions with NaAscorbate (P < 0.001 and P = 0.042). The sodium level, however, increased more over time with NaAscorbate (P < 0.001). There was no statistical difference in other clinical outcomes. CONCLUSION: In patients with septic shock, mega-dose NaAscorbate did not significantly increase cumulative 24-h UO. However, it induced a significantly greater increase in UO and a greater reduction in vasopressor dose and SOFA score over time. One episode of hypernatremia and one of hemolysis were observed in the NaAscorbate group. These findings support further cautious investigation of this novel intervention. Trial registration Australian New Zealand Clinical Trial Registry (ACTRN12620000651987), Date registered June/5/2020.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/complicações , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Austrália , Sepse/complicações , Método Duplo-Cego , Vasoconstritores/uso terapêutico
3.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555849

RESUMO

Dysregulated brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signalling is implicated in several neurodegenerative diseases, including Alzheimer's disease. A failure of neurotrophic support may participate in neurodegenerative mechanisms, such as ferroptosis, which has likewise been implicated in this disease class. The current study investigated whether modulators of TrkB signalling affect ferroptosis. Cell viability, C11 BODIPY, and cell-free oxidation assays were used to observe the impact of TrkB modulators, and an immunoblot assay was used to detect TrkB expression. TrkB modulators such as agonist BDNF, antagonist ANA-12, and inhibitor K252a did not affect RSL3-induced ferroptosis sensitivity in primary cortical neurons expressing detectable TrkB receptors. Several other modulators of the TrkB receptor, including agonist 7,8-DHF, activator phenelzine sulphate, and inhibitor GNF-5837, conferred protection against a range of ferroptosis inducers in several immortalised neuronal and non-neuronal cell lines, such as N27 and HT-1080 cells. We found these immortalised cell lines lack detectable TrkB receptor expression, so the anti-ferroptotic activity of these TrkB modulators was most likely due to their inherent radical-trapping antioxidant properties, which should be considered when interpreting their experimental findings. These modulators or their variants could be potential anti-ferroptotic therapeutics for various diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor trkB , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Neurônios/metabolismo , Sobrevivência Celular
4.
J Biol Chem ; 293(10): 3562-3587, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29305422

RESUMO

Multidrug resistance (MDR) is a major obstacle in cancer treatment due to the ability of tumor cells to efflux chemotherapeutics via drug transporters (e.g. P-glycoprotein (Pgp; ABCB1)). Although the mechanism of Pgp-mediated drug efflux is known at the plasma membrane, the functional role of intracellular Pgp is unclear. Moreover, there has been intense focus on the tumor micro-environment as a target for cancer treatment. This investigation aimed to dissect the effects of tumor micro-environmental stress on subcellular Pgp expression, localization, and its role in MDR. These studies demonstrated that tumor micro-environment stressors (i.e. nutrient starvation, low glucose levels, reactive oxygen species, and hypoxia) induce Pgp-mediated drug resistance. This occurred by two mechanisms, where stressors induced 1) rapid Pgp internalization and redistribution via intracellular trafficking (within 1 h) and 2) hypoxia-inducible factor-1α expression after longer incubations (4-24 h), which up-regulated Pgp and was accompanied by lysosomal biogenesis. These two mechanisms increased lysosomal Pgp and facilitated lysosomal accumulation of the Pgp substrate, doxorubicin, resulting in resistance. This was consistent with lysosomal Pgp being capable of transporting substrates into lysosomes. Hence, tumor micro-environmental stressors result in: 1) Pgp redistribution to lysosomes; 2) increased Pgp expression; 3) lysosomal biogenesis; and 4) potentiation of Pgp substrate transport into lysosomes. In contrast to doxorubicin, when stress stimuli increased lysosomal accumulation of the cytotoxic Pgp substrate, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), this resulted in the agent overcoming resistance. Overall, this investigation describes a novel approach to overcoming resistance in the stressful tumor micro-environment.


Assuntos
Antineoplásicos/farmacologia , Lisossomos/efeitos dos fármacos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Tiossemicarbazonas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/agonistas , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/agonistas , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Biogênese de Organelas , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Tetra-Hidroisoquinolinas/farmacologia
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2793-2813, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777905

RESUMO

Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the "reprogramming" of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.


Assuntos
Proliferação de Células/fisiologia , Enzimas/metabolismo , Ferro/metabolismo , Redes e Vias Metabólicas/fisiologia , Poliaminas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quelantes/farmacocinética , Regulação para Baixo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Regulação para Cima
6.
Biochim Biophys Acta Gen Subj ; 1862(3): 761-774, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29032246

RESUMO

BACKGROUND: The cyclin-dependent kinase inhibitor, p21, is well known for its role in cell cycle arrest. Novel anti-cancer agents that deplete iron pools demonstrate marked anti-tumor activity and are also active in regulating p21 expression. These agents induce p21 mRNA levels independently of the tumor suppressor, p53, and differentially regulate p21 protein expression depending on the cell-type. Several chelators, including an analogue of the potent anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), have entered clinical trials, and thus, their molecular mechanism of action is crucial to assess. Hence, this investigation examined how several iron chelators transcriptionally regulate p21. METHODS: Promoter-deletion constructs; luciferase assays; RT-PCR; western analysis; gene silencing; co-immunoprecipitation. RESULTS: The transcriptional regulation of the p21 promoter by iron chelators was demonstrated to be dependent on the chelator and cell-type examined. The potent anti-cancer chelator, Dp44mT, induced p21 promoter activity in SK-MEL-28 melanoma cells, but not in MCF-7 breast cancer cells. Further analysis of the p21 promoter identified a 50-bp region between -104 and -56-bp that was required for Dp44mT-induced activation in SK-MEL-28 cells. This region contained several Sp1-binding sites and mutational analysis of this region revealed the Sp1-3-binding site played a significant role in Dp44mT-induced activation of p21. Further, co-immunoprecipitation demonstrated that Dp44mT induced a marked increase in the interactions between Sp1 and the transcription factors, estrogen receptor-α and c-Jun. CONCLUSIONS AND GENERAL SIGNIFICANCE: Dp44mT-induced p21 promoter activation via the Sp1-3-binding site and increased Sp1/ER-α and Sp1/c-Jun complex formation in SK-MEL-28 cells, suggesting these complexes were involved in p21 promoter activation.


Assuntos
Antineoplásicos/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quelantes de Ferro/farmacologia , Proteínas de Neoplasias/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Ativação Transcricional/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Melanoma/patologia , Estrutura Molecular , Mutação , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Deleção de Sequência , Fatores de Transcrição/metabolismo
7.
Biochim Biophys Acta Gen Subj ; 1862(9): 2053-2068, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890242

RESUMO

Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.


Assuntos
Proliferação de Células , Neoplasias/fisiopatologia , Poliaminas/metabolismo , Animais , Humanos
8.
J Biol Chem ; 291(8): 3796-820, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26601947

RESUMO

Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a "safe house" to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in multidrug-resistant tumors where a stressful micro-environment exists.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/farmacocinética , Resistencia a Medicamentos Antineoplásicos , Glucose/metabolismo , Lisossomos/metabolismo , Tiossemicarbazonas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Lisossomos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiossemicarbazonas/farmacologia
9.
J Biol Chem ; 291(3): 1029-52, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26534963

RESUMO

N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-ß pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/metabolismo , Receptores ErbB/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas/metabolismo , Piridinas/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Tiossemicarbazonas/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/agonistas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/agonistas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Piridinas/farmacologia , Interferência de RNA , Distribuição Aleatória , Receptor ErbB-2/agonistas , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/agonistas , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tiossemicarbazonas/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biochim Biophys Acta ; 1863(4): 770-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26844774

RESUMO

Melanoma has markedly increased worldwide during the past several decades in the Caucasian population and is responsible for 80% of skin cancer deaths. Considering that metastatic melanoma is almost completely resistant to most current therapies and is linked with a poor patient prognosis, it is crucial to further investigate potential molecular targets. Major cell-autonomous drivers in the pathogenesis of this disease include the classical MAPK (i.e., RAS-RAF-MEK-ERK), WNT, and PI3K signaling pathways. These pathways play a major role in defining the progression of melanoma, and some have been the subject of recent pharmacological strategies to treat this belligerent disease. This review describes the latest advances in the understanding of melanoma progression and the major molecular pathways involved. In addition, we discuss the roles of emerging molecular players that are involved in melanoma pathogenesis, including the functional role of the melanoma tumor antigen, p97/MFI2 (melanotransferrin).


Assuntos
Melanoma/genética , Melanoma/patologia , Oncogenes/fisiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Animais , Progressão da Doença , Genes ras/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Via de Sinalização Wnt/fisiologia , Quinases raf/fisiologia
11.
Biochim Biophys Acta ; 1863(7 Pt A): 1665-81, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27102538

RESUMO

The potent and selective anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), localizes in lysosomes and forms cytotoxic copper complexes that generate reactive oxygen species (ROS), resulting in lysosomal membrane permeabilization (LMP) and cell death. Herein, the role of lysosomal membrane stability in the anti-tumor activity of Dp44mT was investigated. Studies were performed using molecules that protect lysosomal membranes against Dp44mT-induced LMP, namely heat shock protein 70 (HSP70) and cholesterol. Up-regulation or silencing of HSP70 expression did not affect Dp44mT-induced LMP in MCF7 cells. In contrast, cholesterol accumulation in lysosomes induced by the well characterized cholesterol transport inhibitor, 3-ß-[2-(diethyl-amino)ethoxy]androst-5-en-17-one (U18666A), inhibited Dp44mT-induced LMP and markedly and significantly (p<0.001) reduced the ability of Dp44mT to inhibit cancer cell proliferation (i.e., increased the IC(50)) by 140-fold. On the other hand, cholesterol extraction using methyl-ß-cyclodextrin enhanced Dp44mT-induced LMP and significantly (p<0.01) increased its anti-proliferative activity. The protective effect of U18666A in increasing lysosomal cholesterol and preventing the cytotoxic activity of Dp44mT was not due to induced autophagy. Instead, U18666A was found to decrease lysosomal turnover, resulting in autophagosome accumulation. Moreover, preincubation with U18666A did not prevent the ability of Dp44mT to induce autophagosome synthesis, indicating that autophagic initiation via Dp44mT occurs independently of LMP. These studies demonstrate the significance of lysosomal membrane stability in relation to the ability of Dp44mT to execute tumor cell death and overcome pro-survival autophagy. Hence, lysosomal-dependent cell death induced by Dp44mT serves as an important anti-tumor strategy. These results are important for comprehensively understanding the mechanism of action of Dp44mT.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Androstenos/farmacologia , Anticolesterolemiantes/farmacologia , Antineoplásicos/metabolismo , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Concentração Inibidora 50 , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Células MCF-7 , Permeabilidade , Interferência de RNA , Tiossemicarbazonas/metabolismo , Transfecção , beta-Ciclodextrinas/farmacologia
12.
Biochim Biophys Acta ; 1863(4): 727-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26844773

RESUMO

Essential metals, such as iron and copper, play a critical role in a plethora of cellular processes including cell growth and proliferation. However, concomitantly, excess of these metal ions in the body can have deleterious effects due to their ability to generate cytotoxic reactive oxygen species (ROS). Thus, the human body has evolved a very well-orchestrated metabolic system that keeps tight control on the levels of these metal ions. Considering their very high proliferation rate, cancer cells require a high abundance of these metals compared to their normal counterparts. Interestingly, new anti-cancer agents that take advantage of the sensitivity of cancer cells to metal sequestration and their susceptibility to ROS have been developed. These ligands can avidly bind metal ions to form redox active metal complexes, which lead to generation of cytotoxic ROS. Furthermore, these agents also act as potent metastasis suppressors due to their ability to up-regulate the metastasis suppressor gene, N-myc downstream regulated gene 1. This review discusses the importance of iron and copper in the metabolism and progression of cancer, how they can be exploited to target tumors and the clinical translation of novel anti-cancer chemotherapeutics.


Assuntos
Antineoplásicos , Quelantes , Cobre/metabolismo , Descoberta de Drogas , Ferro/metabolismo , Metais/metabolismo , Animais , Antineoplásicos/uso terapêutico , Quelantes/uso terapêutico , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
13.
Clin Sci (Lond) ; 130(11): 853-70, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129098

RESUMO

The mitochondrion is a major site for the metabolism of the transition metal, iron, which is necessary for metabolic processes critical for cell vitality. The enigmatic mitochondrial protein, frataxin, is known to play a significant role in both cellular and mitochondrial iron metabolism due to its iron-binding properties and its involvement in iron-sulfur cluster (ISC) and heme synthesis. The inherited neuro- and cardio-degenerative disease, Friedreich's ataxia (FA), is caused by the deficient expression of frataxin that leads to deleterious alterations in iron metabolism. These changes lead to the accumulation of inorganic iron aggregates in the mitochondrial matrix that are presumed to play a key role in the oxidative damage and subsequent degenerative features of this disease. Furthermore, the concurrent dys-regulation of cellular antioxidant defense, which coincides with frataxin deficiency, exacerbates oxidative stress. Hence, the pathogenesis of FA underscores the importance of the integrated homeostasis of cellular iron metabolism and the cytoplasmic and mitochondrial redox environments. This review focuses on describing the pathogenesis of the disease, the molecular mechanisms involved in mitochondrial iron-loading and the dys-regulation of cellular antioxidant defense due to frataxin deficiency. In turn, current and emerging therapeutic strategies are also discussed.


Assuntos
Ataxia de Friedreich/tratamento farmacológico , Homeostase/efeitos dos fármacos , Proteínas de Ligação ao Ferro/farmacologia , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Ataxia de Friedreich/metabolismo , Humanos , Mitocôndrias/metabolismo , Frataxina
15.
J Biol Chem ; 289(14): 9692-709, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24532803

RESUMO

N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action.


Assuntos
Autofagia , Proteínas de Ciclo Celular/biossíntese , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Cobre/metabolismo , Desferroxamina/farmacologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tiossemicarbazonas/farmacologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
16.
Biochim Biophys Acta ; 1845(1): 1-19, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269900

RESUMO

N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias/terapia , Proteínas Supressoras de Tumor/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/química , Diferenciação Celular , Desenvolvimento Embrionário , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Tripsina/fisiologia
17.
Biochim Biophys Acta ; 1845(2): 166-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24472573

RESUMO

Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important "Achilles' heel" for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a "double punch" mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine(®) and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial-mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the "expanding horizons" for iron chelators in selectively targeting cancer cells.


Assuntos
Quelantes de Ferro/uso terapêutico , Ferro/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , DNA de Neoplasias/biossíntese , DNA de Neoplasias/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Transição Epitelial-Mesenquimal , Humanos , Quelantes de Ferro/metabolismo , Metástase Neoplásica , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/metabolismo
18.
Pharmacol Res ; 100: 255-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26318762

RESUMO

Cancer is a disease that is a "moving target", since as the condition progresses, the molecular targets change and evolve. Moreover, due to clonal selection, a specific anti-cancer drug with one molecular target may only be effective for a limited time period before drug resistance results and the agent becomes ineffective. Hence, the concept of an anti-tumor therapeutic exhibiting polypharmacology can be highly advantageous, rather than a therapeutic obstacle. A novel class of agents possessing these desirable properties are the di-2-pyridylketone thiosemicarbazones, which bind iron and copper to affect a variety of critical molecular targets in tumors. In fact, these compounds possess multiple properties that enable them to overcome the "triad of death" in cancer, namely: primary tumor growth, drug resistance and metastasis. In fact, at the molecular level, their potent anti-oncogenic activity includes: up-regulation of the metastasis suppressor, N-myc downstream regulated gene 1; up-regulation of the tumor suppressor, PTEN; down-regulation of the proto-oncogene, cyclin D1; inhibition of the rate-limiting step in DNA synthesis catalyzed by ribonucleotide reductase; and the inhibition of multiple oncogenic signaling pathways, e.g., Ras/MAPK signaling, protein kinase B (AKT)/phosphatidylinositol-3-kinase, ROCK/pMLC2, etc. This Perspective article discusses the advantages of incorporating polypharmacology into anti-cancer drug design using the di-2-pyridylketone thiosemicarbazones as a pertinent example.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Animais , Regulação para Baixo/efeitos dos fármacos , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Polifarmacologia , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Biochem J ; 462(1): e1-3, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25057890

RESUMO

How is cellular iron (Fe) uptake and efflux regulated in mammalian cells? In this issue of the Biochemical Journal, Yanatori et al. report for the first time that a member of the emerging PCBP [poly(rC)-binding protein] Fe-chaperone family, PCBP2, physically interacts with the major Fe importer DMT1 (divalent metal transporter 1) and the Fe exporter FPN1 (ferroportin 1). In both cases, the interaction of the Fe transporter with PCBP2 is Fe-dependent. Interestingly, another PCBP Fe-chaperone, PCBP1, does not appear to bind to DMT1. Strikingly, the PCBP2-DMT1 interaction is required for DMT1-dependent cellular Fe uptake, suggesting that, in addition to functioning as an intracellular Fe chaperone, PCBP2 may be a molecular 'gate- keeper' for transmembrane Fe transport. These new data hint at the possibility that PCBP2 may be a component of a yet-to-be-described Fe-transport metabolon that engages in Fe channelling to and from Fe transporters and intracellular sites.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Humanos
20.
Nagoya J Med Sci ; 77(1-2): 1-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25797965

RESUMO

Autophagy is an important cell survival pathway which is up-regulated under stress conditions.1) It is a well regulated catabolic process and enables the cell to recycle its constituents and organelles for re-use.1) Autophagy has been implicated to play an important role in a variety of disorders such as cancer and protein aggregatory neurodegenerative diseases e.g., Alzheimer's disease, Parkinson's disease and Huntington's disease.2) Iron is a critical metal required for normal cellular functioning.3) A very tightly regulated balance of iron levels is required for the normal physiological functioning of the cell.3) Both an excess and deficiency of iron can lead to cellular stress, and thereby, alters the autophagic status within the cell. Thus, it is important to completely understand how iron can affect the autophagic pathway and its potential implications under physiological as well as pathological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA