Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Rev Mol Cell Biol ; 16(4): 232-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25785716

RESUMO

Cellular responses to environmental cues involve the mobilization of GTPases, protein kinases and phosphoprotein phosphatases. The spatial organization of these signalling enzymes by scaffold proteins helps to guide the flow of molecular information. Allosteric modulation of scaffolded enzymes can alter their catalytic activity or sensitivity to second messengers in a manner that augments, insulates or terminates local cellular events. This Review examines the features of scaffold proteins and highlights examples of locally organized groups of signalling enzymes that drive essential physiological processes, including hormone action, heart rate, cell division, organelle movement and synaptic transmission.


Assuntos
Fenômenos Fisiológicos Celulares , Proteínas Associadas à Matriz Nuclear/metabolismo , Transdução de Sinais , Animais , Células/enzimologia , Genes de Troca/genética , Humanos , Modelos Biológicos
2.
Proc Natl Acad Sci U S A ; 115(49): E11465-E11474, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455320

RESUMO

A-kinase anchoring proteins (AKAPs) shape second-messenger signaling responses by constraining protein kinase A (PKA) at precise intracellular locations. A defining feature of AKAPs is a helical region that binds to regulatory subunits (RII) of PKA. Mining patient-derived databases has identified 42 nonsynonymous SNPs in the PKA-anchoring helices of five AKAPs. Solid-phase RII binding assays confirmed that 21 of these amino acid substitutions disrupt PKA anchoring. The most deleterious side-chain modifications are situated toward C-termini of AKAP helices. More extensive analysis was conducted on a valine-to-methionine variant in the PKA-anchoring helix of AKAP18. Molecular modeling indicates that additional density provided by methionine at position 282 in the AKAP18γ isoform deflects the pitch of the helical anchoring surface outward by 6.6°. Fluorescence polarization measurements show that this subtle topological change reduces RII-binding affinity 8.8-fold and impairs cAMP responsive potentiation of L-type Ca2+ currents in situ. Live-cell imaging of AKAP18γ V282M-GFP adducts led to the unexpected discovery that loss of PKA anchoring promotes nuclear accumulation of this polymorphic variant. Targeting proceeds via a mechanism whereby association with the PKA holoenzyme masks a polybasic nuclear localization signal on the anchoring protein. This led to the discovery of AKAP18ε: an exclusively nuclear isoform that lacks a PKA-anchoring helix. Enzyme-mediated proximity-proteomics reveal that compartment-selective variants of AKAP18 associate with distinct binding partners. Thus, naturally occurring PKA-anchoring-defective AKAP variants not only perturb dissemination of local second-messenger responses, but also may influence the intracellular distribution of certain AKAP18 isoforms.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Membrana/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Membrana/genética , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Transporte Proteico
3.
J Biol Chem ; 294(9): 3152-3168, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598507

RESUMO

Breast cancer screening and new precision therapies have led to improved patient outcomes. Yet, a positive prognosis is less certain when primary tumors metastasize. Metastasis requires a coordinated program of cellular changes that promote increased survival, migration, and energy consumption. These pathways converge on mitochondrial function, where distinct signaling networks of kinases, phosphatases, and metabolic enzymes regulate these processes. The protein kinase A-anchoring protein dAKAP1 compartmentalizes protein kinase A (PKA) and other signaling enzymes at the outer mitochondrial membrane and thereby controls mitochondrial function and dynamics. Modulation of these processes occurs in part through regulation of dynamin-related protein 1 (Drp1). Here, we report an inverse relationship between the expression of dAKAP1 and mesenchymal markers in breast cancer. Molecular, cellular, and in silico analyses of breast cancer cell lines confirmed that dAKAP1 depletion is associated with impaired mitochondrial function and dynamics, as well as with increased glycolytic potential and invasiveness. Furthermore, disruption of dAKAP1-PKA complexes affected cell motility and mitochondrial movement toward the leading edge in invasive breast cancer cells. We therefore propose that depletion of dAKAP1-PKA "signaling islands" from the outer mitochondrial membrane augments progression toward metastatic breast cancer.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Membranas Mitocondriais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mesoderma/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Invasividade Neoplásica
4.
Mol Cell ; 48(4): 547-59, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23063527

RESUMO

The mitogenic and second-messenger signals that promote cell proliferation often proceed through multienzyme complexes. The kinase-anchoring protein Gravin integrates cAMP and calcium/phospholipid signals at the plasma membrane by sequestering protein kinases A and C with G protein-coupled receptors. In this report we define a role for Gravin as a temporal organizer of phosphorylation-dependent protein-protein interactions during mitosis. Mass spectrometry, molecular, and cellular approaches show that CDK1/Cyclin B1 phosphorylates Gravin on threonine 766 to prime the recruitment of the polo-like kinase Plk1 at defined phases of mitosis. Fluorescent live-cell imaging reveals that cells depleted of Gravin exhibit mitotic defects that include protracted prometaphase and misalignment of chromosomes. Moreover, a Gravin T766A phosphosite mutant that is unable to interact with Plk1 negatively impacts cell proliferation. In situ detection of phospho-T766 Gravin in biopsy sections of human glioblastomas suggests that this phosphorylation event might identify malignant neoplasms.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas de Ciclo Celular/genética , Divisão Celular , Proliferação de Células , Humanos , Camundongos , Mitose , Fosforilação , Ligação Proteica , Células Tumorais Cultivadas , Quinase 1 Polo-Like
5.
Mol Cell ; 42(1): 84-95, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21474070

RESUMO

Adrenergic stimulation of the heart engages cAMP and phosphoinositide second messenger signaling cascades. Cardiac phosphoinositide 3-kinase p110γ participates in these processes by sustaining ß-adrenergic receptor internalization through its catalytic function and by controlling phosphodiesterase 3B (PDE3B) activity via an unknown kinase-independent mechanism. We have discovered that p110γ anchors protein kinase A (PKA) through a site in its N-terminal region. Anchored PKA activates PDE3B to enhance cAMP degradation and phosphorylates p110γ to inhibit PIP(3) production. This provides local feedback control of PIP(3) and cAMP signaling events. In congestive heart failure, p110γ is upregulated and escapes PKA-mediated inhibition, contributing to a reduction in ß-adrenergic receptor density. Pharmacological inhibition of p110γ normalizes ß-adrenergic receptor density and improves contractility in failing hearts.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Classe Ib de Fosfatidilinositol 3-Quinase/química , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , DNA/genética , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Mapeamento de Interação de Proteínas , Quinoxalinas/farmacologia , Receptores Adrenérgicos beta/metabolismo , Sistemas do Segundo Mensageiro , Homologia de Sequência de Aminoácidos , Tiazolidinedionas/farmacologia
6.
Proc Natl Acad Sci U S A ; 113(30): E4328-37, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402760

RESUMO

Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an "actin barrier" that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Actinas/metabolismo , Aquaporina 2/metabolismo , Rim/metabolismo , Reabsorção Renal , Proteínas de Ancoragem à Quinase A/genética , Animais , Feminino , Homeostase , Túbulos Renais Coletores/metabolismo , Masculino , Camundongos Knockout , Técnicas de Cultura de Órgãos , Água/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Mol Cell ; 37(4): 541-50, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20188672

RESUMO

A-kinase anchoring proteins (AKAPs) coordinate cell signaling events. AKAP79 brings together different combinations of enzyme binding partners to customize the regulation of effector proteins. In neurons, muscarinic agonists mobilize an AKAP79-anchored pool of PKC that phosphorylates the KCNQ2 subunit of the M channel. This inhibits potassium permeability to enhance neuronal excitability. Using a dual fluorescent imaging/patch-clamp technique, we visualized AKAP79-anchored PKC phosphorylation of the kinase activity reporter CKAR concurrently with electrophysiological changes in KCNQ2 channels to show that AKAP79 synchronizes both signaling events to optimize the attenuation of M currents. AKAP79 also protects PKC from certain ATP-competitive inhibitors. Related studies suggest that context-dependent protein-protein interactions alter the susceptibility of another protein kinase, PDK1, to ATP analog inhibitors. This implies that intracellular binding partners not only couple individual molecular events in a cell signaling process but can also change the pharmacological profile of certain protein kinases.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Trifosfato de Adenosina/análogos & derivados , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas de Ancoragem à Quinase A/genética , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Modelos Moleculares , Muscarina/metabolismo , Fosforilação , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Piruvato Desidrogenase Quinase de Transferência de Acetil
8.
J Biol Chem ; 290(32): 19445-57, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26088133

RESUMO

The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3ß (GSK3ß). Using a combination of molecular and cellular approaches we show that GSK3ß phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3ß and its substrate ß-catenin in membrane ruffles. Interestingly, GSK3ß can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3ß activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3ß.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/genética , Células Epiteliais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Engenharia Genética , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Transdução de Sinais
9.
J Biol Chem ; 290(22): 14107-19, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25882844

RESUMO

Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteína Quinase C/metabolismo , Receptores Imunológicos/metabolismo , Animais , Encéfalo/metabolismo , Citoplasma/metabolismo , Inativação Gênica , Glutationa Transferase/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Ligantes , Substâncias Macromoleculares , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosforilação , Mapeamento de Interação de Proteínas , Isoformas de Proteínas , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular , Transdução de Sinais
10.
EMBO J ; 31(14): 3147-56, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22643219

RESUMO

Several neurotransmitters, including acetylcholine, regulate neuronal tone by suppressing a non-inactivating low-threshold voltage-gated potassium current generated by the M-channel. Agonist dependent control of the M-channel is mediated by calmodulin, activation of anchored protein kinase C (PKC), and depletion of the phospholipid messenger phosphatidylinositol 4,5-bisphosphate (PIP2). In this report, we show how this trio of second messenger responsive events acts synergistically and in a stepwise manner to suppress activity of the M-current. PKC phosphorylation of the KCNQ2 channel subunit induces dissociation of calmodulin from the M-channel complex. The calmodulin-deficient channel has a reduced affinity towards PIP2. This pathway enhances the effect of concomitant reduction of PIP2, which leads to disruption of the M-channel function. These findings clarify how a common lipid cofactor, such as PIP2, can selectively regulate ion channels.


Assuntos
Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ2/metabolismo , Receptores Muscarínicos/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Canal de Potássio KCNQ2/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação/fisiologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Receptores Muscarínicos/genética
11.
EMBO J ; 31(20): 3991-4004, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22940692

RESUMO

Endocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic ß-cells involves ion channels and mobilization of Ca(2+) and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-ß-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice. Loss of AKAP150 impacts L-type Ca(2+) currents, and attenuates cytoplasmic accumulation of Ca(2+) and cAMP in ß-cells. Yet surprisingly AKAP150 null animals display improved glucose handling and heightened insulin sensitivity in skeletal muscle. More refined analyses of AKAP150 knock-in mice unable to anchor protein kinase A or protein phosphatase 2B uncover an unexpected observation that tethering of phosphatases to a seven-residue sequence of the anchoring protein is the predominant molecular event underlying these metabolic phenotypes. Thus anchored signalling events that facilitate insulin secretion and glucose homeostasis may be set by AKAP150 associated phosphatase activity.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Resistência à Insulina/genética , Proteínas de Membrana/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/deficiência , Proteínas de Ancoragem à Quinase A/genética , Motivos de Aminoácidos , Animais , Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , AMP Cíclico/fisiologia , Glucose/farmacologia , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Insulina/farmacologia , Secreção de Insulina , Insulinoma/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , Fígado/enzimologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Músculo Esquelético/enzimologia , Neoplasias Pancreáticas/patologia , Mapeamento de Interação de Proteínas , Proteínas Quinases/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia , Deleção de Sequência , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo
12.
Mol Cell ; 32(2): 169-79, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18951085

RESUMO

Elevated catecholamines in the heart evoke transcriptional activation of the Myocyte Enhancer Factor (MEF) pathway to induce a cellular response known as pathological myocardial hypertrophy. We have discovered that the A-Kinase Anchoring Protein (AKAP)-Lbc is upregulated in hypertrophic cardiomyocytes. It coordinates activation and movement of signaling proteins that initiate MEF2-mediated transcriptional reprogramming events. Live-cell imaging, fluorescent kinase activity reporters, and RNA interference techniques show that AKAP-Lbc couples activation of protein kinase D (PKD) with the phosphorylation-dependent nuclear export of the class II histone deacetylase HDAC5. These studies uncover a role for AKAP-Lbc in which increased expression of the anchoring protein selectively amplifies a signaling pathway that drives cardiac myocytes toward a pathophysiological outcome.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Cardiomegalia/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Fatores de Transcrição MEF2 , Antígenos de Histocompatibilidade Menor , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Regulação Miogênica/metabolismo , Fenilefrina/farmacologia , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Ratos
13.
J Biol Chem ; 288(24): 17111-21, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23625929

RESUMO

PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.


Assuntos
Proteínas de Ancoragem à Quinase A/química , Técnicas de Visualização da Superfície Celular , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Sequência Consenso , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Análise de Sequência de DNA
14.
Proc Natl Acad Sci U S A ; 108(48): E1227-35, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22084075

RESUMO

A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) to intracellular sites where they preferentially phosphorylate target substrates. Most AKAPs exhibit nanomolar affinity for the regulatory (RII) subunit of the type II PKA holoenzyme, whereas dual-specificity anchoring proteins also bind the type I (RI) regulatory subunit of PKA with 10-100-fold lower affinity. A range of cellular, biochemical, biophysical, and genetic approaches comprehensively establish that sphingosine kinase interacting protein (SKIP) is a truly type I-specific AKAP. Mapping studies located anchoring sites between residues 925-949 and 1,140-1,175 of SKIP that bind RI with dissociation constants of 73 and 774 nM, respectively. Molecular modeling and site-directed mutagenesis approaches identify Phe 929 and Tyr 1,151 as RI-selective binding determinants in each anchoring site. SKIP complexes exist in different states of RI-occupancy as single-molecule pull-down photobleaching experiments show that 41 ± 10% of SKIP sequesters two YFP-RI dimers, whereas 59 ± 10% of the anchoring protein binds a single YFP-RI dimer. Imaging, proteomic analysis, and subcellular fractionation experiments reveal that SKIP is enriched at the inner mitochondrial membrane where it associates with a prominent PKA substrate, the coiled-coil helix protein ChChd3.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas de Ancoragem à Quinase A/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Análise de Variância , Animais , Western Blotting , Linhagem Celular , Clonagem Molecular , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Ressonância de Plasmônio de Superfície , Transfecção
15.
Proc Natl Acad Sci U S A ; 107(50): 21854-9, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21115837

RESUMO

α(1D)-Adrenergic receptors (ARs) are key regulators of cardiovascular system function that increase blood pressure and promote vascular remodeling. Unfortunately, little information exists about the signaling pathways used by this important G protein-coupled receptor (GPCR). We recently discovered that α(1D)-ARs form a "signalosome" with multiple members of the dystrophin-associated protein complex (DAPC) to become functionally expressed at the plasma membrane and bind ligands. However, the molecular mechanism by which the DAPC imparts functionality to the α(1D)-AR signalosome remains a mystery. To test the hypothesis that previously unidentified molecules are recruited to the α(1D)-AR signalosome, we performed an extensive proteomic analysis on each member of the DAPC. Bioinformatic analysis of our proteomic data sets detected a common interacting protein of relatively unknown function, α-catulin. Coimmunoprecipitation and blot overlay assays indicate that α-catulin is directly recruited to the α(1D)-AR signalosome by the C-terminal domain of α-dystrobrevin-1 and not the closely related splice variant α-dystrobrevin-2. Proteomic and biochemical analysis revealed that α-catulin supersensitizes α(1D)-AR functional responses by recruiting effector molecules to the signalosome. Taken together, our study implicates α-catulin as a unique regulator of GPCR signaling and represents a unique expansion of the intricate and continually evolving array of GPCR signaling networks.


Assuntos
Complexo de Proteínas Associadas Distrofina/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais/fisiologia , alfa Catenina/metabolismo , Proteínas Associadas à Distrofina/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , RNA Interferente Pequeno/metabolismo , Receptores Adrenérgicos alfa 1/genética , alfa Catenina/genética
16.
J Biol Chem ; 286(25): 22113-21, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21460214

RESUMO

Protein kinase A-anchoring proteins (AKAPs) influence fundamental cellular processes by directing the cAMP-dependent protein kinase (PKA) toward its intended substrates. In this report we describe the identification and characterization of a ternary complex of AKAP220, the PKA holoenzyme, and the IQ domain GTPase-activating protein 2 isoform (IQGAP2) that is enriched at cortical regions of the cell. Formation of an IQGAP2-AKAP220 core complex initiates a subsequent phase of protein recruitment that includes the small GTPase Rac. Biochemical and molecular biology approaches reveal that PKA phosphorylation of Thr-716 on IQGAP2 enhances association with the active form of the Rac GTPase. Cell-based experiments indicate that overexpression of an IQGAP2 phosphomimetic mutant (IQGAP2 T716D) enhances the formation of actin-rich membrane ruffles at the periphery of HEK 293 cells. In contrast, expression of a nonphosphorylatable IQGAP2 T716A mutant or gene silencing of AKAP220 suppresses formation of membrane ruffles. These findings imply that IQGAP2 and AKAP220 act synergistically to sustain PKA-mediated recruitment of effectors such as Rac GTPases that impact the actin cytoskeleton.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas de Ancoragem à Quinase A/química , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Transdução de Sinais , Proteínas Ativadoras de ras GTPase/metabolismo
17.
J Biol Chem ; 286(45): 39269-81, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21890631

RESUMO

Cell movement requires the coordinated reception, integration, and processing of intracellular signals. We have discovered that the protein kinase A anchoring protein AKAP220 interacts with the cytoskeletal scaffolding protein IQGAP1 to influence cell motility. AKAP220/IQGAP1 networks receive and integrate calcium and cAMP second messenger signals and position signaling enzymes near their intended substrates at leading edges of migrating cells. IQGAP1 supports calcium/calmodulin-dependent association of factors that modulate microtubule dynamics. AKAP220 suppresses GSK-3ß and positions this kinase to allow recruitment of the plus-end microtubule tracking protein CLASP2. Gene silencing of AKAP220 alters the rate of microtubule polymerization and the lateral tracking of growing microtubules and retards cell migration in metastatic human cancer cells. This reveals an unappreciated role for this anchored kinase/microtubule effector protein network in the propagation of cell motility.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Movimento Celular/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/genética , AMP Cíclico/metabolismo , Inativação Gênica , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
18.
Nat Cell Biol ; 7(11): 1066-73, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16228013

RESUMO

Specificity in cell signalling can be influenced by the targeting of different enzyme combinations to substrates. The A-kinase anchoring protein AKAP79/150 is a multivalent scaffolding protein that coordinates the subcellular localization of second-messenger-regulated enzymes, such as protein kinase A, protein kinase C and protein phosphatase 2B. We developed a new strategy that combines RNA interference of the endogenous protein with a protocol that selects cells that have been rescued with AKAP79/150 forms that are unable to anchor selected enzymes. Using this approach, we show that AKAP79/150 coordinates different enzyme combinations to modulate the activity of two distinct neuronal ion channels: AMPA-type glutamate receptors and M-type potassium channels. Utilization of distinct enzyme combinations in this manner provides a means to expand the repertoire of cellular events that the same AKAP modulates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Calcineurina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Calcineurina/fisiologia , Inibidores de Calcineurina , Linhagem Celular , Proteína 1 Homóloga a Discs-Large , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Agonistas Muscarínicos , Canais de Potássio/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
19.
Nature ; 437(7058): 574-8, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16177794

RESUMO

Cyclic adenosine 3', 5'-monophosphate (cAMP) is a ubiquitous mediator of intracellular signalling events. It acts principally through stimulation of cAMP-dependent protein kinases (PKAs) but also activates certain ion channels and guanine nucleotide exchange factors (Epacs). Metabolism of cAMP is catalysed by phosphodiesterases (PDEs). Here we identify a cAMP-responsive signalling complex maintained by the muscle-specific A-kinase anchoring protein (mAKAP) that includes PKA, PDE4D3 and Epac1. These intermolecular interactions facilitate the dissemination of distinct cAMP signals through each effector protein. Anchored PKA stimulates PDE4D3 to reduce local cAMP concentrations, whereas an mAKAP-associated ERK5 kinase module suppresses PDE4D3. PDE4D3 also functions as an adaptor protein that recruits Epac1, an exchange factor for the small GTPase Rap1, to enable cAMP-dependent attenuation of ERK5. Pharmacological and molecular manipulations of the mAKAP complex show that anchored ERK5 can induce cardiomyocyte hypertrophy. Thus, two coupled cAMP-dependent feedback loops are coordinated within the context of the mAKAP complex, suggesting that local control of cAMP signalling by AKAP proteins is more intricate than previously appreciated.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais , 3',5'-AMP Cíclico Fosfodiesterases/genética , Animais , Linhagem Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Citocinas/metabolismo , Humanos , Hipertrofia/induzido quimicamente , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos
20.
Proc Natl Acad Sci U S A ; 105(34): 12557-62, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18711127

RESUMO

A-Kinase Anchoring Proteins (AKAPs) ensure the fidelity of second messenger signaling events by directing protein kinases and phosphatases toward their preferred substrates. AKAP150 brings protein kinase A (PKA), the calcium/calmodulin dependent phosphatase PP2B and protein kinase C (PKC) to postsynaptic membranes where they facilitate the phosphorylation dependent modulation of certain ion channels. Immunofluorescence and electrophysiological recordings were combined with behavioral analyses to assess whether removal of AKAP150 by gene targeting in mice changes the signaling environment to affect excitatory and inhibitory neuronal processes. Mislocalization of PKA in AKAP150 null hippocampal neurons alters the bidirectional modulation of postsynaptic AMPA receptors with concomitant changes in synaptic transmission and memory retention. AKAP150 null mice also exhibit deficits in motor coordination and strength that are consistent with a role for the anchoring protein in the cerebellum. Loss of AKAP150 in sympathetic cervical ganglion (SCG) neurons reduces muscarinic suppression of inhibitory M currents and provides these animals with a measure of resistance to seizures induced by the non-selective muscarinic agonist pilocarpine. These studies argue that distinct AKAP150-enzyme complexes regulate context-dependent neuronal signaling events in vivo.


Assuntos
Proteínas de Ancoragem à Quinase A/deficiência , Neurônios/fisiologia , Animais , Cerebelo/citologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Knockout , Transtornos das Habilidades Motoras/etiologia , Agonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso , Receptores de AMPA/metabolismo , Convulsões , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA