Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(3): 632-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26721397

RESUMO

Cilia (eukaryotic flagella) are present in diverse eukaryotic lineages and have essential motility and sensory functions. The cilium's capacity to sense and transduce extracellular signals depends on dynamic trafficking of ciliary membrane proteins. This trafficking is often mediated by the Bardet-Biedl Syndrome complex (BBSome), a protein complex for which the precise subcellular distribution and mechanisms of action are unclear. In humans, BBSome defects perturb ciliary membrane protein distribution and manifest clinically as Bardet-Biedl Syndrome. Cilia are also important in several parasites that cause tremendous human suffering worldwide, yet biology of the parasite BBSome remains largely unexplored. We examined BBSome functions in Trypanosoma brucei, a flagellated protozoan parasite that causes African sleeping sickness in humans. We report that T. brucei BBS proteins assemble into a BBSome that interacts with clathrin and is localized to membranes of the flagellar pocket and adjacent cytoplasmic vesicles. Using BBS gene knockouts and a mouse infection model, we show the T. brucei BBSome is dispensable for flagellar assembly, motility, bulk endocytosis, and cell viability but required for parasite virulence. Quantitative proteomics reveal alterations in the parasite surface proteome of BBSome mutants, suggesting that virulence defects are caused by failure to maintain fidelity of the host-parasite interface. Interestingly, among proteins altered are those with ubiquitination-dependent localization, and we find that the BBSome interacts with ubiquitin. Collectively, our data indicate that the BBSome facilitates endocytic sorting of select membrane proteins at the base of the cilium, illuminating BBSome roles at a critical host-pathogen interface and offering insights into BBSome molecular mechanisms.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Endocitose , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidade , Animais , Clatrina/metabolismo , Flagelos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Parasitos/patogenicidade , Ligação Proteica , Transporte Proteico , Vesículas Transportadoras/metabolismo , Virulência
2.
RNA ; 20(8): 1272-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24962368

RESUMO

Members of the eIF4E mRNA cap-binding family are involved in translation and the modulation of transcript availability in other systems as part of a three-component complex including eIF4G and eIF4A. The kinetoplastids possess four described eIF4E and five eIF4G homologs. We have identified two new eIF4E family proteins in Trypanosoma brucei, and define distinct complexes associated with the fifth member, TbEIF4E5. The cytosolic TbEIF4E5 protein binds cap 0 in vitro. TbEIF4E5 was found in association with two of the five TbEIF4Gs. TbIF4EG1 bound TbEIF4E5, a 47.5-kDa protein with two RNA-binding domains, and either the regulatory protein 14-3-3 II or a 117.5-kDa protein with guanylyltransferase and methyltransferase domains in a potentially dynamic interaction. The TbEIF4G2/TbEIF4E5 complex was associated with a 17.9-kDa hypothetical protein and both 14-3-3 variants I and II. Knockdown of TbEIF4E5 resulted in the loss of productive cell movement, as evidenced by the inability of the cells to remain in suspension in liquid culture and the loss of social motility on semisolid plating medium, as well as a minor reduction of translation. Cells appeared lethargic, as opposed to compromised in flagellar function per se. The minimal use of transcriptional control in kinetoplastids requires these organisms to implement downstream mechanisms to regulate gene expression, and the TbEIF4E5/TbEIF4G1/117.5-kDa complex in particular may be a key player in that process. We suggest that a pathway involved in cell motility is affected, directly or indirectly, by one of the TbEIF4E5 complexes.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Fator de Iniciação 4E em Eucariotos/química , Técnicas de Inativação de Genes , Humanos , Dados de Sequência Molecular , Ligação Proteica , Capuzes de RNA/metabolismo , RNA de Protozoário/metabolismo , Alinhamento de Sequência , Trypanosoma brucei brucei/genética
3.
Cell Microbiol ; 16(6): 912-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24286532

RESUMO

The flagellum of Trypanosoma brucei is an essential and multifunctional organelle that drives parasite motility and is receiving increased attention as a potential drug target. In the mammalian host, parasite motility is suspected to contribute to infection and disease pathogenesis. However, it has not been possible to test this hypothesis owing to lack of motility mutants that are viable in the bloodstream life cycle stage that infects the mammalian host. We recently identified a bloodstream-form motility mutant in 427-derived T. brucei in which point mutations in the LC1 dynein subunit disrupt propulsive motility but do not affect viability. These mutants have an actively beating flagellum, but cannot translocate. Here we demonstrate that the LC1 point mutant fails to show enhanced cell motility upon increasing viscosity of the surrounding medium, which is a hallmark of wild type T. brucei, thus indicating that motility of the mutant is fundamentally altered compared with wild type cells. We next used the LC1 point mutant to assess the influence of trypanosome motility on infection in mice. Wesurprisingly found that disrupting parasite motility has no discernible effect on T. brucei bloodstream infection. Infection time-course, maximum parasitaemia, number of waves of parasitaemia, clinical features and disease outcome are indistinguishable between motility mutant and control parasites. Our studies provide an important step toward understanding the contribution of parasite motility to infection and a foundation for future investigations of T. brucei interaction with the mammalian host.


Assuntos
Locomoção , Trypanosoma brucei brucei/fisiologia , Tripanossomíase Africana/patologia , Tripanossomíase Africana/parasitologia , Animais , Modelos Animais de Doenças , Camundongos , Parasitemia , Análise de Sobrevida , Fatores de Tempo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/patogenicidade , Virulência
4.
Eukaryot Cell ; 13(8): 1064-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24879126

RESUMO

Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.


Assuntos
Adenilil Ciclases/metabolismo , Flagelos/enzimologia , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Adenilil Ciclases/genética , Animais , Linhagem Celular , Insetos/parasitologia , Estágios do Ciclo de Vida , Transporte Proteico , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento
5.
Eukaryot Cell ; 13(7): 896-908, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24839125

RESUMO

Trypanosomes lack the transcriptional control characteristic of the majority of eukaryotes that is mediated by gene-specific promoters in a one-gene-one-promoter arrangement. Rather, their genomes are transcribed in large polycistrons with no obvious functional linkage. Posttranscriptional regulation of gene expression must thus play a larger role in these organisms. The eIF4E homolog TbEIF4E6 binds mRNA cap analogs in vitro and is part of a complex in vivo that may fulfill such a role. Knockdown of TbEIF4E6 tagged with protein A-tobacco etch virus protease cleavage site-protein C to approximately 15% of the normal expression level resulted in viable cells that displayed a set of phenotypes linked to detachment of the flagellum from the length of the cell body, if not outright flagellum loss. While these cells appeared and behaved as normal under stationary liquid culture conditions, standard centrifugation resulted in a marked increase in flagellar detachment. Furthermore, the ability of TbEIF4E6-depleted cells to engage in social motility was reduced. The TbEIF4E6 protein forms a cytosolic complex containing a triad of proteins, including the eIF4G homolog TbEIF4G5 and a hypothetical protein of 70.3 kDa, referred to as TbG5-IP. The TbG5-IP analysis revealed two domains with predicted secondary structures conserved in mRNA capping enzymes: nucleoside triphosphate hydrolase and guanylyltransferase. These complex members have the potential for RNA interaction, either via the 5' cap structure for TbEIF4E6 and TbG5-IP or through RNA-binding domains in TbEIF4G5. The associated proteins provide a signpost for future studies to determine how this complex affects capped RNA molecules.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Sítios de Ligação , Movimento Celular , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/genética , Flagelos/metabolismo , Nucleotidiltransferases/química , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/fisiologia
6.
Eukaryot Cell ; 12(9): 1202-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851336

RESUMO

The eukaryotic flagellum (or cilium) is a broadly conserved organelle that provides motility for many pathogenic protozoa and is critical for normal development and physiology in humans. Therefore, defining core components of motile axonemes enhances understanding of eukaryotic biology and provides insight into mechanisms of inherited and infectious diseases in humans. In this study, we show that component of motile flagella 22 (CMF22) is tightly associated with the flagellar axoneme and is likely to have been present in the last eukaryotic common ancestor. The CMF22 amino acid sequence contains predicted IQ and ATPase associated with a variety of cellular activities (AAA) motifs that are conserved among CMF22 orthologues in diverse organisms, hinting at the importance of these domains in CMF22 function. Knockdown by RNA interference (RNAi) and rescue with an RNAi-immune mRNA demonstrated that CMF22 is required for propulsive cell motility in Trypanosoma brucei. Loss of propulsive motility in CMF22-knockdown cells was due to altered flagellar beating patterns, rather than flagellar paralysis, indicating that CMF22 is essential for motility regulation and likely functions as a fundamental regulatory component of motile axonemes. CMF22 association with the axoneme is weakened in mutants that disrupt the nexin-dynein regulatory complex, suggesting potential interaction with this complex. Our results provide insight into the core machinery required for motility of eukaryotic flagella.


Assuntos
Axonema/química , Movimento Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Flagelos/química , Flagelos/metabolismo , Flagelos/fisiologia , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Mutação , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/fisiologia
7.
Mol Cell Proteomics ; 10(10): M111.010538, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21685506

RESUMO

The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.


Assuntos
Flagelos/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Proteoma/análise , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Movimento Celular , Proteínas da Matriz Extracelular/análise , Interações Hospedeiro-Parasita , Humanos , Estágios do Ciclo de Vida , Proteoma/genética , Proteoma/metabolismo , Proteínas de Protozoários/análise , Interferência de RNA , Transdução de Sinais
8.
Methods Mol Biol ; 2589: 467-480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255643

RESUMO

Histone deacetylase 6 (HDAC6) is an atypical lysine deacetylase with tandem catalytic domains and an ubiquitin-binding zinc finger domain. HDAC6 is involved in various biological processes, such as cell motility or stress responses, and has been implicated in pathologies ranging from cancer to neurodegeneration. Due to this broad range of functions, there has been considerable interest in developing HDAC6-specific small molecule inhibitors, several of which are already available. The crystal structure of the tandem catalytic domains of zebrafish HDAC6 has revealed an arrangement with twofold symmetry and extensive surface interaction between the catalytic domains. Further dissection of the biochemical properties of HDAC6 and the development of novel inhibitors will benefit from being able to routinely express high-quality protein. We present here our optimized protocol for expression and crystallization of the zebrafish tandem catalytic domains.


Assuntos
Lisina , Peixe-Zebra , Animais , Desacetilase 6 de Histona/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Domínio Catalítico , Cristalização , Lisina/metabolismo , Ubiquitinas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Acetilação
9.
Sci Adv ; 8(15): eabn0832, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427153

RESUMO

Dysfunctional cilia cause pleiotropic human diseases termed ciliopathies. These hereditary maladies are often caused by defects in cilia assembly, a complex event that is regulated by the ciliogenesis and planar polarity effector (CPLANE) proteins Wdpcp, Inturned, and Fuzzy. CPLANE proteins are essential for building the cilium and are mutated in multiple ciliopathies, yet their structure and molecular functions remain elusive. Here, we show that mammalian CPLANE proteins comprise a bona fide complex and report the near-atomic resolution structures of the human Wdpcp-Inturned-Fuzzy complex and of the mouse Wdpcp-Inturned-Fuzzy complex bound to the small guanosine triphosphatase Rsg1. Notably, the crescent-shaped CPLANE complex binds phospholipids such as phosphatidylinositol 3-phosphate via multiple modules and a CPLANE ciliopathy mutant exhibits aberrant lipid binding. Our study provides critical structural and functional insights into an enigmatic ciliogenesis-associated complex as well as unexpected molecular rationales for ciliopathies.

10.
mSphere ; 6(1)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568455

RESUMO

Trypanosoma brucei is the protozoan parasite responsible for sleeping sickness, a lethal vector-borne disease. T. brucei has a single flagellum (cilium) that plays critical roles in transmission and pathogenesis. An emerging concept is that the flagellum is organized into subdomains, each having specialized composition and function. The overall flagellum proteome has been well studied, but a critical knowledge gap is the protein composition of individual subdomains. We have tested whether APEX-based proximity proteomics could be used to examine the protein composition of T. brucei flagellum subdomains. As APEX-based labeling has not previously been described in T. brucei, we first fused APEX2 to the DRC1 subunit of the nexin-dynein regulatory complex, a well-characterized axonemal complex. We found that DRC1-APEX2 directs flagellum-specific biotinylation, and purification of biotinylated proteins yields a DRC1 "proximity proteome" having good overlap with published proteomes obtained from purified axonemes. Having validated the use of APEX2 in T. brucei, we next attempted to distinguish flagellar subdomains by fusing APEX2 to a flagellar membrane protein that is restricted to the flagellum tip, AC1, and another one that is excluded from the tip, FS179. Fluorescence microscopy demonstrated subdomain-specific biotinylation, and principal-component analysis showed distinct profiles between AC1-APEX2 and FS179-APEX2. Comparing these two profiles allowed us to identify an AC1 proximity proteome that is enriched for tip proteins, including proteins involved in signaling. Our results demonstrate that APEX2-based proximity proteomics is effective in T. brucei and can be used to resolve the proteome composition of flagellum subdomains that cannot themselves be readily purified.IMPORTANCE Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Given the essential and multifunctional role of the T. brucei flagellum, there is need for approaches that enable proteomic analysis of individual subdomains. Our work establishes that APEX2 proximity labeling can, indeed, be implemented in the biochemical environment of T. brucei and has allowed identification of proximity proteomes for different flagellar subdomains that cannot be purified. This capacity opens the possibility to study the composition and function of other compartments. We expect this approach may be extended to other eukaryotic pathogens and will enhance the utility of T. brucei as a model organism to study ciliopathies, heritable human diseases in which cilium function is impaired.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases/genética , Flagelos/genética , Enzimas Multifuncionais/genética , Proteoma/análise , Proteômica , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Flagelos/química , Humanos , Proteínas de Protozoários/química , Transdução de Sinais , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/patogenicidade
11.
Nat Rev Microbiol ; 12(7): 505-18, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24931043

RESUMO

Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.


Assuntos
Flagelos/fisiologia , Trypanosoma brucei brucei/fisiologia , Tripanossomíase Africana/parasitologia , Animais , Divisão Celular , Movimento Celular/fisiologia , Interações Hospedeiro-Parasita , Humanos , Insetos Vetores/parasitologia , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA