RESUMO
The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease.
Assuntos
Comportamento Animal , Ataxia Cerebelar/enzimologia , Cerebelo/enzimologia , Proteínas Mitocondriais/deficiência , Músculo Esquelético/enzimologia , Ubiquinona/deficiência , Animais , Células COS , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/psicologia , Cerebelo/fisiopatologia , Cerebelo/ultraestrutura , Chlorocebus aethiops , Modelos Animais de Doenças , Tolerância ao Exercício , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Masculino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Atividade Motora , Força Muscular , Músculo Esquelético/fisiopatologia , Fenótipo , Ligação Proteica , Conformação Proteica , Proteômica/métodos , Reconhecimento Psicológico , Teste de Desempenho do Rota-Rod , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Convulsões/enzimologia , Convulsões/genética , Convulsões/fisiopatologia , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , Ubiquinona/química , Ubiquinona/genéticaRESUMO
Osteosarcoma cells U2OS are partially susceptible to adeno-associated virus (AAV)-2 infection, allowing efficient synthesis of Rep proteins and, in a low percentage of cells, capsid production. It is not clear if this partial susceptibility to infection is due to the bone-cell-like nature of these cells or is a result of their transformed properties. Here, we grew osteosarcoma cells in a biomimetic three-dimensional bone-like matrix composed of calcium phosphate and chitosan, and tested whether this would increase or reduce their permissiveness to virus. The osteosarcoma cells grew in the matrix and began to express the alkaline phosphatase bone cell differentiation marker. This was accompanied by a block to their infection by AAV, as indicated by Rep and capsid production. Infection of cells growing in three-dimensional tissue-like matrices could be, in a wider context, a practical way to mimic in vivo conditions.
Assuntos
Dependovirus/crescimento & desenvolvimento , Osteócitos/virologia , Biomimética , Linhagem Celular Tumoral , Humanos , Técnicas de Cultura de TecidosRESUMO
Adeno-associated virus (AAV) is a small, DNA-containing dependovirus with promising potential as a gene delivery vehicle. Given the variety of applications of AAV-based vectors in the treatment of genetic disorders, numerous studies have focused on the immunogenicity of recombinant AAV. In general, AAV vectors appear not to induce strong inflammatory responses. We have found that AAV2, when it infects the osteosarcoma cells U2OS, can initiate part of its replicative cycle in the absence of helper virus. This does not occur in untransformed cells. We set out to test whether the cellular innate antiviral defenses control this susceptibility and found that, in nonimmune normal human fibroblasts, AAV2 induces type I interferon production and release and the accumulation of nuclear promyelocytic leukemia bodies. AAV fails to mobilize this defense pathway in the U2OS cells. This permissiveness is in large part due to impairment of the viral sensing machinery in these cells. Our investigations point to Toll-like receptor 9 as a potential intracellular sensor that detects AAV2 and triggers the antiviral state in AAV-infected untransformed cells. Efficient sensing of the AAV genome and the ensuing activation of an innate antiviral response are thus crucial cellular events dictating the parvovirus infectivity in host cells.
Assuntos
Dependovirus/imunologia , Vetores Genéticos/imunologia , Imunidade Inata , Linhagem Celular , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/metabolismo , Receptor Toll-Like 9/imunologiaRESUMO
The ubiquitin proteasome system and autophagy are major protein turnover mechanisms in muscle cells, which ensure stemness and muscle fibre maintenance. Muscle cells contain a high proportion of cytoskeletal proteins, which are prone to misfolding and aggregation; pathological processes that are observed in several neuromuscular diseases called proteinopathies. Despite advances in deciphering the mechanisms underlying misfolding and aggregation, little is known about how muscle cells manage cytoskeletal degradation. Here, we describe a process by which muscle cells degrade the misfolded intermediate filament proteins desmin and vimentin by the proteasome. This relies on the MTM1-UBQLN2 complex to recognize and guide these misfolded proteins to the proteasome and occurs prior to aggregate formation. Thus, our data highlight a safeguarding function of the MTM1-UBQLN2 complex that ensures cytoskeletal integrity to avoid proteotoxic aggregate formation.
Assuntos
Autofagia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Filamentos Intermediários/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Proteínas de Ciclo Celular/química , Citoesqueleto/genética , Desmina/genética , Humanos , Proteínas de Filamentos Intermediários/química , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Agregados Proteicos/genética , Dobramento de Proteína , Proteínas Tirosina Fosfatases não Receptoras/química , Proteólise , Ubiquitina/genética , Ubiquitinas/química , Vimentina/genéticaRESUMO
Coenzyme Q, or ubiquinone, is an endogenously synthesized lipid-soluble antioxidant that plays a major role in the mitochondrial respiratory chain. Although extensively studied for decades, recent data on coenzyme Q have painted an exciting albeit incomplete picture of the multiple facets of this molecule's function. In humans, mutations in the genes involved in the biosynthesis of coenzyme Q lead to a heterogeneous group of rare disorders, with most often severe and debilitating symptoms. In this review, we describe the current understanding of coenzyme Q biosynthesis, provide a detailed overview of human coenzyme Q deficiencies and discuss the existing mouse models for coenzyme Q deficiency. Furthermore, we briefly examine the current state of affairs in non-mitochondrial coenzyme Q functions and the latter's link to statin.