Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 22(6): 1009-1018, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30924583

RESUMO

Coevolution is a force contributing to the generation and maintenance of biodiversity. It is influenced by environmental conditions including the scarcity of essential resources, which can drive the evolution of defence and virulence traits. We conducted a long-term chemostat experiment where the marine cyanobacterium Synechococcus was challenged with a lytic phage under nitrogen (N) or phosphorus (P) limitation. This manipulation of nutrient stoichiometry altered the stability of host-parasite interactions and the underlying mode of coevolution. By assessing the infectivity with > 18 000 pairwise challenges, we documented directional selection for increased phage resistance, consistent with arms-race dynamics while phage infectivity fluctuated through time, as expected when coevolution is driven by negative frequency-dependent selection. The resulting infection networks were 50% less modular under N- versus P-limitation reflecting host-range contraction and asymmetric coevolutionary trajectories. Nutrient stoichiometry affects eco-evolutionary feedbacks in ways that may alter the dynamics and functioning of environmental and host-associated microbial communities.


Assuntos
Bacteriófagos , Evolução Biológica , Interações Hospedeiro-Parasita , Biodiversidade , Nutrientes
2.
Water Environ Res ; 89(10): 897-920, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954647

RESUMO

A total of 79 papers published in 2016 were reviewed ranging from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, steroids, antibiotic resistance genes, cyanotoxins, and potential effects of biochar use in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Steroid Hormones, Anthelmintics, Antibiotic Fate and Occurrence, Antibiotic Resistance Genes, Cyanotoxins, and Implications of Biochar in Agricultural Environments.


Assuntos
Agricultura , Monitoramento Ambiental , Poluentes Ambientais/análise , Ecologia
3.
BMC Genomics ; 14: 158, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23497343

RESUMO

BACKGROUND: Giant viruses in the genus Chlorovirus (family Phycodnaviridae) infect eukaryotic green microalgae. The prototype member of the genus, Paramecium bursaria chlorella virus 1, was sequenced more than 15 years ago, and to date there are only 6 fully sequenced chloroviruses in public databases. Presented here are the draft genome sequences of 35 additional chloroviruses (287 - 348 Kb/319 - 381 predicted protein encoding genes) collected across the globe; they infect one of three different green algal species. These new data allowed us to analyze the genomic landscape of 41 chloroviruses, which revealed some remarkable features about these viruses. RESULTS: Genome colinearity, nucleotide conservation and phylogenetic affinity were limited to chloroviruses infecting the same host, confirming the validity of the three previously known subgenera. Clues for the existence of a fourth new subgenus indicate that the boundaries of chlorovirus diversity are not completely determined. Comparison of the chlorovirus phylogeny with that of the algal hosts indicates that chloroviruses have changed hosts in their evolutionary history. Reconstruction of the ancestral genome suggests that the last common chlorovirus ancestor had a slightly more diverse protein repertoire than modern chloroviruses. However, more than half of the defined chlorovirus gene families have a potential recent origin (after Chlorovirus divergence), among which a portion shows compositional evidence for horizontal gene transfer. Only a few of the putative acquired proteins had close homologs in databases raising the question of the true donor organism(s). Phylogenomic analysis identified only seven proteins whose genes were potentially exchanged between the algal host and the chloroviruses. CONCLUSION: The present evaluation of the genomic evolution pattern suggests that chloroviruses differ from that described in the related Poxviridae and Mimiviridae. Our study shows that the fixation of algal host genes has been anecdotal in the evolutionary history of chloroviruses. We finally discuss the incongruence between compositional evidence of horizontal gene transfer and lack of close relative sequences in the databases, which suggests that the recently acquired genes originate from a still largely un-sequenced reservoir of genomes, possibly other unknown viruses that infect the same hosts.


Assuntos
Evolução Biológica , Clorófitas/genética , Vírus de DNA/genética , Phycodnaviridae/genética , Clorófitas/virologia , Vírus de DNA/classificação , Transferência Genética Horizontal , Genoma Viral , Phycodnaviridae/classificação , Filogenia , Proteínas Virais
4.
Toxins (Basel) ; 14(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448860

RESUMO

The neurotoxic alkaloid ß-N-methyl-amino-l-alanine (BMAA) and related isomers, including N-(2-aminoethyl glycine) (AEG), ß-amino-N-methyl alanine (BAMA), and 2,4-diaminobutyric acid (DAB), have been reported previously in cyanobacterial samples. However, there are conflicting reports regarding their occurrence in surface waters. In this study, we evaluated the impact of amending lake water samples with trichloroacetic acid (0.1 M TCA) on the detection of BMAA isomers, compared with pre-existing protocols. A sensitive instrumental method was enlisted for the survey, with limits of detection in the range of 5−10 ng L−1. Higher detection rates and significantly greater levels (paired Wilcoxon's signed-rank tests, p < 0.001) of BMAA isomers were observed in TCA-amended samples (method B) compared to samples without TCA (method A). The overall range of B/A ratios was 0.67−8.25 for AEG (up to +725%) and 0.69−15.5 for DAB (up to +1450%), with absolute concentration increases in TCA-amended samples of up to +15,000 ng L−1 for AEG and +650 ng L−1 for DAB. We also documented the trends in the occurrence of BMAA isomers for a large breadth of field-collected lakes from Brazil, Canada, France, Mexico, and the United Kingdom. Data gathered during this overarching campaign (overall, n = 390 within 45 lake sampling sites) indicated frequent detections of AEG and DAB isomers, with detection rates of 30% and 43% and maximum levels of 19,000 ng L−1 and 1100 ng L−1, respectively. In contrast, BAMA was found in less than 8% of the water samples, and BMAA was not found in any sample. These results support the analyses of free-living cyanobacteria, wherein BMAA was often reported at concentrations of 2−4 orders of magnitude lower than AEG and DAB. Seasonal measurements conducted at two bloom-impacted lakes indicated limited correlations of BMAA isomers with total microcystins or chlorophyll-a, which deserves further investigation.


Assuntos
Diamino Aminoácidos , Cianobactérias , Alanina , Diamino Aminoácidos/análise , Brasil , Lagos/microbiologia , México , Neurotoxinas/análise , Água/análise
5.
Ecology ; 101(4): e02968, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925775

RESUMO

The movement of organisms across habitat boundaries has important consequences for populations, communities, and ecosystems. However, because most species are not well adapted to all habitat types, dispersal into suboptimal habitats could induce physiological changes associated with persistence strategies that influence community assembly. For example, high rates of cross-boundary dispersal are thought to maintain sink populations of terrestrial bacteria in aquatic habitats, but these bacteria may also persist by lowering their metabolic activity, introducing metabolic heterogeneity that buffers the population against species sorting. To differentiate between these assembly processes, we analyzed bacterial composition along a hydrological flow path from terrestrial soils through an aquatic reservoir by sequencing the active and total (active + inactive) portions of the community. When metabolic heterogeneity was ignored, our data were consistent with views that cross-boundary dispersal is important for structuring aquatic bacterial communities. In contrast, we found evidence for strong species sorting in the active portion of the aquatic community, suggesting that dispersal may have a weaker effect than persistence strategies on aquatic community assembly. By accounting for metabolic heterogeneity in complex communities, our findings clarify the roles of local- and regional-scale assembly processes in terrestrial-aquatic meta-ecosystems.


Assuntos
Ecossistema , Modelos Biológicos , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA