Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Mol Biol ; 7: 36, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17042952

RESUMO

BACKGROUND: Loss of heterozygosity (LOH) contributes to many cancers, but the rate at which these events occur in normal cells of the body is not clear. LOH would be detectable in diverse cell types in the body if this event were to confer an obvious cellular phenotype. Mice that carry two different fluorescent protein genes as alleles of a locus would seem to be a useful tool for addressing this issue because LOH would change a cell's phenotype from dichromatic to monochromatic. In addition, LOH caused by mitotic crossing over might be discernable in tissues because this event produces a pair of neighboring monochromatic cells that are different colors. RESULTS: As a step in assessing the utility of this approach, we derived primary embryonic fibroblast populations and embryonic stem cell lines from mice that carried two different fluorescent protein genes as alleles at the chromosome 6 locus, ROSA26. Fluorescence activated cell sorting (FACS) showed that the vast majority of cells in each line expressed the two marker proteins at similar levels, and that populations exhibited expression noise similar to that seen in bacteria and yeast. Cells with a monochromatic phenotype were present at frequencies on the order of 10(-4) and appeared to be produced at a rate of approximately 10(-5) variant cells per mitosis. 45 of 45 stably monochromatic ES cell clones exhibited loss of the expected allele at the ROSA26 locus. More than half of these clones retained heterozygosity at a locus between ROSA26 and the centromere. Other clones exhibited LOH near the centromere, but were disomic for chromosome 6. CONCLUSION: Allelic fluorescent markers allowed LOH at the ROSA26 locus to be detected by FACS. LOH at this locus was usually not accompanied by LOH near the centromere, suggesting that mitotic recombination was the major cause of ROSA26 LOH. Dichromatic mouse embryonic cells provide a novel system for studying genetic/karyotypic stability and factors influencing expression from allelic genes. Similar approaches will allow these phenomena to be studied in tissues.


Assuntos
Proteínas de Bactérias/biossíntese , Fibroblastos/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Perda de Heterozigosidade/genética , Proteínas Luminescentes/biossíntese , Proteínas/genética , Alelos , Animais , Proteínas de Bactérias/genética , Células Cultivadas/metabolismo , Centrômero/ultraestrutura , Coloração Cromossômica , Metanossulfonato de Etila/farmacologia , Citometria de Fluxo , Deleção de Genes , Dosagem de Genes , Expressão Gênica , Marcadores Genéticos , Instabilidade Genômica , Proteínas de Fluorescência Verde/genética , Heterozigoto , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Repetições de Microssatélites , Mitose , Monossomia , Mutação , Fenótipo , RNA não Traduzido , Recombinação Genética , Trissomia
2.
Mutat Res ; 556(1-2): 45-53, 2004 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-15491631

RESUMO

The effects of lack of the mismatch repair protein PMS2 on germline and maternal-effect mutations were studied in transgenic mice that allow mutant cells to be visualized in situ. Tg(betaA-G11PLAP) mice are transgenic for the G11 allele of a human placental alkaline phosphatase (PLAP) gene driven by a human beta-actin promoter. The G11 allele of the PLAP gene does not produce enzyme due to a frameshift induced by a mononucleotide repeat containing 11 G:C basepairs. Loss of one G:C basepair restores enzyme production. When the G11 PLAP allele was passed through the germline of female mice lacking PMS2, approximately 25% of the offspring that inherited the transgene exhibited the phenotype expected for germline mutation. The mice transmitted the germline-mutation phenotype normally and their offspring exhibited PLAP enzyme activity in at least 30% of the cells in each tissue examined. By contrast, only 1 of 32 mice that inherited the G11 PLAP transgene from a wild-type male crossed to a Pms2-/- female exhibited a high number of PLAP+ cells. Compared to germline revertants, approximately one half to one quarter as many cells were PLAP+, suggesting that a mutation occurred in one cell of an embryo containing two to four cells. These data suggest that the paternally derived Pms2 gene provided normal levels of PMS2 protein to embryos by the time they reached the eight-cell stage, but that smaller embryos formed from PMS2-deficient eggs lacked PMS2 function.


Assuntos
Pareamento Incorreto de Bases , Reparo do DNA , Desenvolvimento Embrionário/genética , Impressão Genômica , Instabilidade Genômica , Células Germinativas , Fosfatase Alcalina/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Placenta/enzimologia
3.
Mutat Res ; 556(1-2): 127-34, 2004 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-15491640

RESUMO

Harlequin (Hq) mice develop ataxia due to an X-linked recessive mutation in the gene encoding apoptosis-inducing factor (Aif). Brain cells in Hq mice contain the modified base 8-hydroxydeoxyguanosine (8-OHdG), suggesting that the defect in Aif causes increased DNA oxidation in these cells. Because oxidative damage is mutagenic, Hq mice might suffer increased mutation in the brain. To examine this possibility, mutation in the brain was assessed using the Tg(betaA-G11PLAP) mouse model, which allows mutant cells to be visualized in tissue sections in situ. Hq mice exhibited more and larger patches of PLAP positive tissue in the brain. PLAP+ cells were observed in all areas of the brain. No increase in the number of PLAP+ cells was seen in three other tissues, suggesting that the effect of Aif deficiency on mutation was specific to brain.


Assuntos
Encéfalo/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Mutação , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Fosfatase Alcalina/metabolismo , Animais , Sequência de Bases , Encéfalo/enzimologia , Primers do DNA , Camundongos , Camundongos Transgênicos , Placenta/enzimologia
4.
Proc Natl Acad Sci U S A ; 102(7): 2408-13, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15695337

RESUMO

Transgenic mice that allow mutant cells to be visualized in situ were used to study variation in tumors. These mice carry the G11 placental alkaline phosphatase (PLAP) transgene, a mutant allele rendered incapable of producing its enzyme product by a frameshift caused by insertion of a tract of G:C base pairs in a coding region. Spontaneous deletion of one G:C base pair from this tract restores gene function, and cells with PLAP activity can be detected histochemically. To study tumors, the G11 PLAP transgene was introduced into the polyoma virus middle T antigen mammary tumor model. Tumors in these mice exhibited up to 300 times more PLAP+ cells than normal tissues. PLAP+ cells were located throughout each tumor. Many of the PLAP+ cells were singlets, but clusters also were common, with one cluster containing >30,000 cells. Comparison of these data to simulations produced by computer models suggested that multiple factors were involved in generating mutant cells in tumors. Although genetic instability appeared to have occurred in most tumors, large clusters were much more common than expected based on instability alone.


Assuntos
Variação Genética , Neoplasias Mamárias Experimentais/genética , Modelos Genéticos , Fosfatase Alcalina/genética , Animais , Proliferação de Células , Simulação por Computador , Feminino , Mutação da Fase de Leitura , Proteínas Ligadas por GPI , Genes Reporter , Isoenzimas/genética , Masculino , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Placenta/enzimologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA