Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 631(8019): 150-163, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898272

RESUMO

Here, we introduce the Tabulae Paralytica-a compilation of four atlases of spinal cord injury (SCI) comprising a single-nucleus transcriptome atlas of half a million cells, a multiome atlas pairing transcriptomic and epigenomic measurements within the same nuclei, and two spatial transcriptomic atlases of the injured spinal cord spanning four spatial and temporal dimensions. We integrated these atlases into a common framework to dissect the molecular logic that governs the responses to injury within the spinal cord1. The Tabulae Paralytica uncovered new biological principles that dictate the consequences of SCI, including conserved and divergent neuronal responses to injury; the priming of specific neuronal subpopulations to upregulate circuit-reorganizing programs after injury; an inverse relationship between neuronal stress responses and the activation of circuit reorganization programs; the necessity of re-establishing a tripartite neuroprotective barrier between immune-privileged and extra-neural environments after SCI and a failure to form this barrier in old mice. We leveraged the Tabulae Paralytica to develop a rejuvenative gene therapy that re-established this tripartite barrier, and restored the natural recovery of walking after paralysis in old mice. The Tabulae Paralytica provides a window into the pathobiology of SCI, while establishing a framework for integrating multimodal, genome-scale measurements in four dimensions to study biology and medicine.


Assuntos
Núcleo Celular , Epigenômica , Multiômica , Neurônios , Análise de Célula Única , Traumatismos da Medula Espinal , Transcriptoma , Animais , Feminino , Masculino , Camundongos , Atlas como Assunto , Núcleo Celular/metabolismo , Neurônios/patologia , Neurônios/metabolismo , Paralisia/genética , Paralisia/patologia , Paralisia/reabilitação , Paralisia/terapia , Recuperação de Função Fisiológica , Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/terapia , Caminhada , Anatomia Artística , Vias Neurais , Terapia Genética
2.
Nature ; 590(7845): 308-314, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505019

RESUMO

Spinal cord injury (SCI) induces haemodynamic instability that threatens survival1-3, impairs neurological recovery4,5, increases the risk of cardiovascular disease6,7, and reduces quality of life8,9. Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord10, which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury11, and restored walking after paralysis12. Here, we leveraged these concepts to develop EES protocols that restored haemodynamic stability after SCI. We established a preclinical model that enabled us to dissect the topology and dynamics of the sympathetic circuits, and to understand how EES can engage these circuits. We incorporated these spatial and temporal features into stimulation protocols to conceive a clinical-grade biomimetic haemodynamic regulator that operates in a closed loop. This 'neuroprosthetic baroreflex' controlled haemodynamics for extended periods of time in rodents, non-human primates and humans, after both acute and chronic SCI. We will now conduct clinical trials to turn the neuroprosthetic baroreflex into a commonly available therapy for people with SCI.


Assuntos
Barorreflexo , Biomimética , Hemodinâmica , Próteses e Implantes , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Vias Neurais , Primatas , Ratos , Ratos Endogâmicos Lew , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia
3.
J Med Genet ; 58(6): 385-391, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32571900

RESUMO

BACKGROUND: Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is an X-linked motor neuron disorder caused by an expanded CAG repeat in the gene coding for the androgen receptor (AR). The range and significance of reduced penetrance alleles in SBMA has not been fully determined to date. We presently sought to determine the range of reduced penetrance alleles in SBMA. METHODS: Through systematic literature review and meta-analysis, we collected and analysed data from 2576 patients with SBMA and compared the distributions of the CAG repeat number (CAG)n in the AR gene between patients and 112 248 control alleles of the general population. RESULTS: Our analysis revealed an unexpectedly high frequency of expanded SBMA-associated alleles, with (CAG)n ≥35 present in 107/100,000 and (CAG)n ≥38 present in 27/100,000 of the general population. Consequently, we suggest an updated model describing the distribution of expanded alleles in the general population. We argue against the established cut-off principle for the penetrance of SBMA and suggest that penetrance gradually increases from 35 to approximately 46 (CAG)n, above which it reaches a plateau approaching maximum value. CONCLUSION: Asymptomatic men of the general population with no/unknown SBMA family history are free of risk when carrying (CAG)n ≤34, are at intermediate but increasing risk for developing SBMA when carrying (CAG)n ≈35-46 and have close to 100% risk of developing the disease when carrying (CAG)n ≥47. The above observations should be helpful and clinically useful when providing genetic counselling to individuals and families bearing SBMA-associated alleles.


Assuntos
Atrofia Bulboespinal Ligada ao X/genética , Penetrância , Idade de Início , Alelos , Atrofia Bulboespinal Ligada ao X/epidemiologia , Feminino , Frequência do Gene , Humanos , Meiose , Modelos Genéticos
4.
Adv Exp Med Biol ; 1195: 199-204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468478

RESUMO

X-linked spinal and bulbar muscular atrophy (SBMA), also known as Kennedy syndrome, is an adult-onset neurodegenerative disorder characterized by slowly progressive muscle atrophy and other severe symptoms gradually leading to reduced mobility and ultimately to death due to respiratory failure. Two decades ago we reported the first prenatal diagnosis of SBMA worldwide. Here we present a Greek family in which we have performed seven prenatal DNA tests for SBMA mutation after extensive genetic counseling. Since there is not yet a cure for SBMA, prenatal testing may be a good choice for couples at risk for prevention of this neurodegenerative disorder in their offspring. The issues addressed during genetic counseling for such a disabling disorder of adult onset are discussed as a paradigm for other conditions with similar characteristics.


Assuntos
Atrofia Bulboespinal Ligada ao X/diagnóstico , Atrofia Bulboespinal Ligada ao X/genética , Saúde da Família , Aconselhamento Genético , Mutação , Diagnóstico Pré-Natal , Adulto , Atrofia Bulboespinal Ligada ao X/complicações , Feminino , Grécia , Humanos , Atrofia Muscular/complicações , Gravidez
5.
Science ; 381(6664): 1338-1345, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733871

RESUMO

Axon regeneration can be induced across anatomically complete spinal cord injury (SCI), but robust functional restoration has been elusive. Whether restoring neurological functions requires directed regeneration of axons from specific neuronal subpopulations to their natural target regions remains unclear. To address this question, we applied projection-specific and comparative single-nucleus RNA sequencing to identify neuronal subpopulations that restore walking after incomplete SCI. We show that chemoattracting and guiding the transected axons of these neurons to their natural target region led to substantial recovery of walking after complete SCI in mice, whereas regeneration of axons simply across the lesion had no effect. Thus, reestablishing the natural projections of characterized neurons forms an essential part of axon regeneration strategies aimed at restoring lost neurological functions.


Assuntos
Axônios , Regeneração Nervosa , Paralisia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Caminhada , Animais , Camundongos , Axônios/fisiologia , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Paralisia/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Conectoma
6.
J Pers Med ; 12(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143259

RESUMO

BACKGROUND: Multiple Sclerosis treatment with B-cell targeted therapies may be associated with an increased incidence of headache. We aimed to find and compare the association of B-cell targeted therapies with the incidence of headache in patients with Multiple Sclerosis. METHODS: In a systematic based approach, the following databases were searched from inception until the 6th of June 2020: Pubmed/MEDLINE, ClinicalTrials.gov, EU Clinical Trials Register. Only randomized clinical trials (RCTs) enrolling patients with Multiple Sclerosis comparing B-cell targeted therapies (Rituximab, Ocrelizumab, Ofatumumab, Ublituximab or Cladribine) with placebo were selected for the systematic review and further meta-analysis. PRISMA guidelines were followed at all stages of the systematic review. The primary outcome was an all-cause headache of B-cell targeting therapy in patients with Multiple Sclerosis. RESULTS: Nine RCTs were included. Compared with placebo, treatment with B-cell targeting therapies revealed a trend in headache risk, but it was not statistically significant (Relative Risk 1.12 [95% Confidence Interval 0.96-1.30]; p = 0.15; I2 = 9.32%). Surprisingly, in a sub-group analysis, Cladribine was statistically significant for an increase in headache risk (RR 1.20 [95% CI 1.006-1.42]; p = 0.042; I2 = 0%; 3 studies with 2107 participants). CONCLUSIONS: Even though a trend is shown, B-cell targeted therapies do not correlate with an increased incidence of headache as an adverse effect. Sub-analyses revealed a significant association between Cladribine alone and an increased incidence of headache. Whereas a purinergic signaling cascade is proposed as a mechanism of action, further research is needed to unravel the underlying pathogenetic mechanism of headache induction and establish headache prevention strategies.

7.
Nat Neurosci ; 24(8): 1132-1141, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168339

RESUMO

Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.


Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Sinais (Psicologia) , Masculino , Camundongos , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA