Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732976

RESUMO

This work studies enhancing the capabilities of compact laser spectroscopes integrated into space-exploration rovers by adding 3D topography measurement techniques. Laser spectroscopy enables the in situ analysis of sample composition, aiding in the understanding of the geological history of extraterrestrial bodies. To complement spectroscopic data, the inclusion of 3D imaging is proposed to provide unprecedented contextual information. The morphological information aids material characterization and hence the constraining of rock and mineral histories. Assigning height information to lateral pixels creates topographies, which offer a more complete spatial dataset than contextual 2D imaging. To aid the integration of 3D measurement into future proposals for rover-based laser spectrometers, the relevant scientific, rover, and sample constraints are outlined. The candidate 3D technologies are discussed, and estimates of performance, weight, and power consumptions guide the down-selection process in three application examples. Technology choice is discussed from different perspectives. Inline microscopic fringe-projection profilometry, incoherent digital holography, and multiwavelength digital holography are found to be promising candidates for further development.

2.
Nano Lett ; 19(2): 1131-1135, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30645131

RESUMO

We present the fabrication and exploration of arrays of nanodots of SrRuO3 with dot sizes between 500 and 15 nm. Down to the smallest dot size explored, the samples were found to be magnetic with a maximum Curie temperature TC achieved by dots of 30 nm diameter. This peak in TC is associated with a dot-size-induced relief of the epitaxial strain, as evidenced by scanning transmission electron microscopy.

3.
Micron ; 140: 102979, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33197749

RESUMO

Electron transparent TEM lamella with unaltered microstructure and chemistry is the prerequisite for successful TEM explorations. Currently, TEM specimen preparation of quantum nanostructures, such as quantum dots (QDs), remains a challenge. In this work, we optimize the sample-preparation routine for achieving high-quality TEM specimens consisting of SrRuO3 (SRO) QDs grown on SrTiO3 (STO) substrates. We demonstrate that a combination of ion-beam-milling techniques can produce higher-quality specimens of quantum nanostructures compared to TEM specimens prepared by a combination of tripod polishing followed by Ar+ ion milling. In the proposed method, simultaneous imaging in a focused ion-beam device enables accurate positioning of the QD regions and assures the presence of dots in the thin lamella by cutting the sample inclined by 5° relative to the dots array. Furthermore, the preparation of TEM lamellae with several large electron-transparent regions that are separated by thicker walls effectively reduces the bending of the specimen and offers broad thin areas. The final use of a NanoMill efficiently removes the amorphous layer without introducing any additional damage.

4.
Sci Adv ; 3(4): e1602060, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28439541

RESUMO

Spin-bearing molecules can be stabilized on surfaces and in junctions with desirable properties, such as a net spin that can be adjusted by external stimuli. Using scanning probes, initial and final spin states can be deduced from topographic or spectroscopic data, but how the system transitions between these states is largely unknown. We address this question by manipulating the total spin of magnetic cobalt hydride complexes on a corrugated boron nitride surface with a hydrogen-functionalized scanning probe tip by simultaneously tracking force and conductance. When the additional hydrogen ligand is brought close to the cobalt monohydride, switching between a correlated S = 1/2 Kondo state, where host electrons screen the magnetic moment, and an S = 1 state with magnetocrystalline anisotropy is observed. We show that the total spin changes when the system is transferred onto a new potential energy surface that is defined by the position of the hydrogen in the junction. These results show how and why chemically functionalized tips are an effective tool to manipulate adatoms and molecules and a promising new method to selectively tune spin systems.

5.
Nat Commun ; 6: 8536, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456084

RESUMO

Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA