RESUMO
BACKGROUND: Seasonal malaria chemoprevention (SMC) using sulfadoxine-pyrimethamine plus amodiaquine (SP-AQ), is a community-based malaria preventive strategy commonly used in the Sahel region of sub-Saharan Africa. However, to date it has not been implemented in East Africa due to high SP resistance levels. This paper is a report on the implementation of SMC outside of the Sahel in an environment with a high level of presumed SP-resistance: five cycles of SMC using SPAQ were administered to children 3-59 months during a period of high malaria transmission (July-December 2019) in 21 villages in South Sudan. METHODS: A population-based SMC coverage survey was combined with a longitudinal time series analysis of health facility and community health data measured after each SMC cycle. SMC campaign effectiveness was assessed by Poisson model. SPAQ molecular resistance markers were additionally analysed from dried blood spots from malaria confirmed patients. RESULTS: Incidence of uncomplicated malaria was reduced from 6.6 per 100 to an average of 3.2 per 100 after SMC administration (mean reduction: 53%) and incidence of severe malaria showed a reduction from 21 per 10,000 before SMC campaign to a mean of 3.3 per 10,000 after each cycle (mean reduction: 84%) in the target group when compared to before the SMC campaign. The most prevalent molecular haplotype associated with SP resistance was the IRNGE haplotype (quintuple mutant, with 51I/59R/108N mutation in pfdhfr + 437G/540E in pfdhps). In contrast, there was a low frequency of AQ resistance markers and haplotypes resistant to both drugs combined (< 2%). CONCLUSIONS: The SMC campaign was effective and could be used as an additional preventive tool in seasonal malaria settings outside of the Sahel, especially in areas where access to health care is unstable. Malaria case load reduction was observed despite the high level of resistance to SP.
Assuntos
Antimaláricos , Malária , Criança , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Sudão do Sul , Estações do Ano , Malária/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , Quimioprevenção , Morbidade , Resistência a Medicamentos/genéticaRESUMO
BACKGROUND: Visceral leishmaniasis (VL) in patients with human immunodeficiency virus (HIV) presents an increasingly important patient cohort in areas where both infections are endemic. Evidence for treatment is sparce, with no high-quality studies from the Indian subcontinent. METHODS: This is a randomized, open-label, parallel-arm, phase 3 trial conducted within a single hospital in Patna, India. One hundred and fifty patients aged ≥18 years with serologically confirmed HIV and parasitologically confirmed VL were randomly allocated to 1 of 2 treatment arms, either a total 40 mg/kg intravenous liposomal amphotericin B (AmBisome; Gilead Pharmaceuticals) administered in 8 equal doses over 24 days or a total 30 mg/kg intravenous AmBisome administered in 6 equal doses given concomitantly with a total 1.4 g oral miltefosine administered through 2 daily doses of 50 mg over 14 days. The primary outcome was intention-to-treat relapse-free survival at day 210, defined as absence of signs and symptoms of VL or, if symptomatic, negative parasitological investigations. RESULTS: Among 243 patients assessed for eligibility, 150 were recruited between 2 January 2017 and 5 April 2018, with no loss to follow-up. Relapse-free survival at day 210 was 85% (64/75; 95% CI, 77-100%) in the monotherapy arm, and 96%, (72/75; 90-100%) in the combination arm. Nineteen percent (28/150) were infected with concurrent tuberculosis, divided equally between arms. Excluding those with concurrent tuberculosis, relapse-free survival at day 210 was 90% (55/61; 82-100%) in the monotherapy and 97% (59/61; 91-100%) in the combination therapy arm. Serious adverse events were uncommon and similar in each arm. CONCLUSIONS: Combination therapy appears to be safe, well tolerated, and effective, and halves treatment duration of current recommendations. CLINICAL TRIALS REGISTRATION: Clinical Trial Registry India (CTRI/2015/05/005807; the protocol is available online at https://osf.io/avz7r).
Assuntos
Antiprotozoários , Coinfecção , Infecções por HIV , Leishmaniose Visceral , Adolescente , Adulto , Anfotericina B , Antiprotozoários/efeitos adversos , Coinfecção/tratamento farmacológico , Quimioterapia Combinada , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Índia , Leishmaniose Visceral/complicações , Leishmaniose Visceral/tratamento farmacológico , Preparações Farmacêuticas , Fosforilcolina/efeitos adversos , Fosforilcolina/análogos & derivados , Recidiva , Resultado do TratamentoRESUMO
BACKGROUND: The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being also widely used as part of seasonal malaria chemoprevention programs combined with sulfadoxine-pyrimethamine. While artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas. METHODS: We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n = 4214 individuals). The time to PCR-confirmed reinfection after treatment was used to estimate the duration of post-treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov models. Accelerated failure-time models were used to identify potential effects of covariates on the time to reinfection. The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to determine the potential public health impact of each drug when used for first-line treatment. RESULTS: We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7-15.7) for AL and 15.2 days (95% CI 12.8-18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7-18.6 days for AL and 10.2-18.7 days for AS-AQ. Significant predictors of time to reinfection in multivariable models were transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~ 2-fold longer protection than AL. Conversely, at a higher prevalence of 86Y and 76T mutant parasites (> 80%), AL provided up to 1.5-fold longer protection than AS-AQ. Our simulations found that these differences in the duration of protection could alter population-level clinical incidence of malaria by up to 14% in under-5-year-old children when the drugs were used as first-line treatments in areas with high, seasonal transmission. CONCLUSION: Choosing a first-line treatment which provides optimal post-treatment prophylaxis given the local prevalence of resistance-associated markers could make a significant contribution to reducing malaria morbidity.
Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/patogenicidade , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Artemisininas/farmacologia , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , MasculinoRESUMO
BACKGROUND: In 2012, the World Health Organization recommended blocking the transmission of Plasmodium falciparum with single low-dose primaquine (SLDPQ, target dose 0.25 mg base/kg body weight), without testing for glucose-6-phosphate dehydrogenase deficiency (G6PDd), when treating patients with uncomplicated falciparum malaria. We sought to develop an age-based SLDPQ regimen that would be suitable for sub-Saharan Africa. METHODS: Using data on the anti-infectivity efficacy and tolerability of primaquine (PQ), the epidemiology of anaemia, and the risks of PQ-induced acute haemolytic anaemia (AHA) and clinically significant anaemia (CSA), we prospectively defined therapeutic-dose ranges of 0.15-0.4 mg PQ base/kg for children aged 1-5 years and 0.15-0.5 mg PQ base/kg for individuals aged ≥6 years (therapeutic indices 2.7 and 3.3, respectively). We chose 1.25 mg PQ base for infants aged 6-11 months because they have the highest rate of baseline anaemia and the highest risks of AHA and CSA. We modelled an anthropometric database of 661,979 African individuals aged ≥6 months (549,127 healthy individuals, 28,466 malaria patients and 84,386 individuals with other infections/illnesses) by the Box-Cox transformation power exponential and tested PQ doses of 1-15 mg base, selecting dosing groups based on calculated mg/kg PQ doses. RESULTS: From the Box-Cox transformation power exponential model, five age categories were selected: (i) 6-11 months (n = 39,886, 6.03%), (ii) 1-5 years (n = 261,036, 45.46%), (iii) 6-9 years (n = 20,770, 3.14%), (iv) 10-14 years (n = 12,155, 1.84%) and (v) ≥15 years (n = 328,132, 49.57%) to receive 1.25, 2.5, 5, 7.5 and 15 mg PQ base for corresponding median (1st and 99th centiles) mg/kg PQ base of: (i) 0.16 (0.12-0.25), (ii) 0.21 (0.13-0.37), (iii) 0.25 (0.16-0.38), (iv) 0.26 (0.15-0.38) and (v) 0.27 (0.17-0.40). The proportions of individuals predicted to receive optimal therapeutic PQ doses were: 73.2 (29,180/39,886), 93.7 (244,537/261,036), 99.6 (20,690/20,770), 99.4 (12,086/12,155) and 99.8% (327,620/328,132), respectively. CONCLUSIONS: We plan to test the safety of this age-based dosing regimen in a large randomised placebo-controlled trial (ISRCTN11594437) of uncomplicated falciparum malaria in G6PDd African children aged 0.5 - 11 years. If the regimen is safe and demonstrates adequate pharmacokinetics, it should be used to support malaria elimination.
Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/prevenção & controle , Primaquina/uso terapêutico , Adolescente , Adulto , África Subsaariana , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Criança , Pré-Escolar , Protocolos Clínicos , Relação Dose-Resposta a Droga , Feminino , Deficiência de Glucosefosfato Desidrogenase , Humanos , Lactente , Malária Falciparum/tratamento farmacológico , Malária Falciparum/transmissão , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum , Primaquina/administração & dosagem , Primaquina/efeitos adversos , Adulto JovemRESUMO
Northern Uganda hosts a large population of refugees from South Sudan, and malaria is one of the major health problems in the area. In 2015, intermittent preventive treatment for malaria (IPTc) was implemented in two refugee camps among children aged 6 months to 14 years. Three distributions of dihydroartemisinin-piperaquine (DP) were conducted at 8-week intervals. The first dose was directly administered at IPTc distribution sites and the second and third doses were given to caregivers to administer at home. A multi-faceted evaluation was implemented, including coverage surveys, malaria prevalence surveys, reinforced surveillance, and pharmacovigilance. Programme coverage exceeded 90% during all three distributions with a total of 40,611 participants. Compared to same period during the previous year (only available data), the incidence of malaria in the target populations was reduced (IRR 0.73, 95% CI 0.69-0.77 among children under 5 years old; IRR 0.70, 95% CI 0.67-0.72 among children aged 5-14 years). Among those not targeted for intervention, the incidence between the 2 years increased (IRR 1.49, 95% CI 1.42-1.56). Cross-sectional surveys showed a prevalence of parasitaemia (microscopy or PCR) of 12.9-16.4% (95% CI 12.6-19.3) during the intervention, with the highest prevalence among children aged 5-14 years, but with a large increase 8 weeks after the final distribution. A total of 57 adverse events were reported during the intervention period, including one severe adverse event (death from varicella). Adverse events were of mild to moderate severity, and were mainly dermatologic and gastrointestinal. This is the first documentation of an IPTc programme in a refugee camp. The positive impact of DP on the incidence of malaria, together with its favourable safety profile, should lead to further use of IPTc in similar settings. Expanding coverage groups and decreasing intervals between distributions might provide more benefit, but would need to be balanced with the operational implications of a broader, more frequent distribution schedule.
Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária/prevenção & controle , Parasitemia/prevenção & controle , Quinolinas/uso terapêutico , Campos de Refugiados , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Combinação de Medicamentos , Feminino , Humanos , Incidência , Lactente , Malária/epidemiologia , Malária/parasitologia , Masculino , Parasitemia/epidemiologia , Parasitemia/parasitologia , Prevalência , Uganda/epidemiologiaRESUMO
BACKGROUND: Severe acute malnutrition (SAM) affects almost all organs and has been associated with reduced intestinal absorption of medicines. However, very limited information is available on the pharmacokinetic properties of antimalarial drugs in this vulnerable population. We assessed artemether-lumefantrine (AL) clinical efficacy in children with SAM compared to those without. METHODS: Children under 5 years of age with uncomplicated P. falciparum malaria were enrolled between November 2013 and January 2015 in Mali and Niger, one third with uncomplicated SAM and two thirds without. AL was administered under direct observation with a fat intake consisting of ready-to-use therapeutic food (RUTF - Plumpy'Nut®) in SAM children, twice daily during 3 days. Children were followed for 42 days, with PCR-corrected adequate clinical and parasitological response (ACPR) at day 28 as the primary outcome. Lumefantrine concentrations were assessed in a subset of participants at different time points, including systematic measurements on day 7. RESULTS: A total of 399 children (360 in Mali and 39 in Niger) were enrolled. Children with SAM were younger than their non-SAM counterparts (mean 17 vs. 28 months, P < 0.0001). PCR-corrected ACPR was 100 % (95 % CI, 96.8-100 %) in SAM at both day 28 and 42, versus 98.8 % (96.4-99.7 %) at day 28 and 98.3 % (95.6-99.4 %) at day 42 in non-SAM (P = 0.236 and 0.168, respectively). Compared to younger children, children older than 21 months experienced more reinfections and SAM was associated with a greater risk of reinfection until day 28 (adjusted hazard ratio = 2.10 (1.04-4.22), P = 0.038). Day 7 lumefantrine concentrations were significantly lower in SAM than non-SAM (median 251 vs. 365 ng/mL, P = 0.049). CONCLUSIONS: This study shows comparable therapeutic efficacy of AL in children without SAM and in those with SAM when given in combination with RUTF, but a higher risk of reinfection in older children suffering from SAM. This could be associated with poorer exposure to the antimalarials as documented by a lower lumefantrine concentration on day 7. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01958905 , registration date: October 7, 2013.
Assuntos
Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Etanolaminas/farmacocinética , Fluorenos/farmacocinética , Malária Falciparum/tratamento farmacológico , Desnutrição Aguda Grave/metabolismo , Antimaláricos/administração & dosagem , Combinação Arteméter e Lumefantrina , Artemisininas/administração & dosagem , Pré-Escolar , Combinação de Medicamentos , Etanolaminas/administração & dosagem , Feminino , Fluorenos/administração & dosagem , Humanos , Lactente , Malária Falciparum/metabolismo , Masculino , Mali , Níger , Desnutrição Aguda Grave/parasitologiaRESUMO
In October 2012, a cluster of illnesses and deaths was reported in Uganda and was confirmed to be an outbreak of Marburg virus disease (MVD). Patients meeting the case criteria were interviewed using a standard investigation form, and blood specimens were tested for evidence of acute or recent Marburg virus infection by reverse transcription-polymerase chain reaction (RT-PCR) and antibody enzyme-linked immunosorbent assay. The total count of confirmed and probable MVD cases was 26, of which 15 (58%) were fatal. Four of 15 laboratory-confirmed cases (27%) were fatal. Case patients were located in 4 different districts in Uganda, although all chains of transmission originated in Ibanda District, and the earliest case detected had an onset in July 2012. No zoonotic exposures were identified. Symptoms significantly associated with being a MVD case included hiccups, anorexia, fatigue, vomiting, sore throat, and difficulty swallowing. Contact with a case patient and attending a funeral were also significantly associated with being a case. Average RT-PCR cycle threshold values for fatal cases during the acute phase of illness were significantly lower than those for nonfatal cases. Following the institution of contact tracing, active case surveillance, care of patients with isolation precautions, community mobilization, and rapid diagnostic testing, the outbreak was successfully contained 14 days after its initial detection.
Assuntos
Doença do Vírus de Marburg/epidemiologia , Marburgvirus/isolamento & purificação , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Surtos de Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Doença do Vírus de Marburg/virologia , Pessoa de Meia-Idade , Uganda/epidemiologia , Adulto JovemRESUMO
BACKGROUND: Malnutrition and malaria frequently coexist in sub-Saharan African countries. Studies on efficacy of antimalarial treatments usually follow the WHO standardized protocol in which severely malnourished children are systematically excluded. Few studies have assessed the efficacy of chloroquine, sulfadoxine-pyrimethamine and quinine in severe acute malnourished children. Overall, efficacy of these treatments appeared to be reduced, attributed to lower immunity and for some antimalarials altered pharmacokinetic profiles and lower drug concentrations. However, similar research on the efficacy and pharmacokinetic profiles of artemisinin-combination therapies (ACTs) and especially artemether-lumefantrine in malnourished children is currently lacking. The main objective of this study is to assess whether artemether-lumefantrine is less efficacious in children suffering from severe acute malnutrition (SAM) compared to non-SAM children, and if so, to what extent this can be attributed to a sub-optimal pharmacokinetic profile. METHODS/DESIGN: In two sites, Ouelessebougou, Mali and Maradi, Niger, children with uncomplicated microscopically-confirmed P. falciparum malaria aged between 6 and 59 months will be enrolled. Two non-SAM children will be enrolled after the enrolment of each SAM case. Children with severe manifestations of malaria or complications of acute malnutrition needing intensive treatment will be excluded. Treatment intakes will be supervised and children will be followed-up for 42 days, according to WHO guidance for surveillance of antimalarial drug efficacy. Polymerase Chain Reaction genotyping will be used to distinguish recrudescence from re-infection. SAM children will also benefit from the national nutritional rehabilitation program. Outcomes will be compared between the SAM and non-SAM populations. The primary outcome will be adequate clinical and parasitological response at day 28 after PCR correction, estimated by Kaplan-Meier analysis. To assess the pharmacokinetic profile of lumefantrine, a sparse sampling approach will be used with randomized allocation of sampling times (5 per child). A total of 180 SAM children and 360 non-SAM children will be recruited during the 2013 and 2014 malaria seasons. DISCUSSION: This study will provide important information that is currently lacking on the effect of SAM on therapeutic efficacy and pharmacokinetic profile of artemether-lumefantrine. If it shows lower therapeutic efficacy and decreased lumefantrine concentrations, it would inform dose optimization studies in SAM children. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01958905.
Assuntos
Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Etanolaminas/farmacocinética , Fluorenos/farmacocinética , Malária Falciparum/tratamento farmacológico , Combinação Arteméter e Lumefantrina , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , Masculino , Mali , Níger , Recidiva , Projetos de Pesquisa , Desnutrição Aguda Grave , Resultado do TratamentoRESUMO
BACKGROUND: The use and implementation of novel tools for malaria control such as long lasting impregnated bednets (LLINs) and Indoor Residual Spraying (IRS) over the last decade has contributed to a substantial reduction in malaria burden globally. However numerous challenges exist particularly in relation to vector control in emergency settings. This study seeks to explore expert opinion on the utility of existing tools within the emergency context setting and to better understand the attitude towards emerging and innovative tools (including Genetically Modified Mosquitoes) to augment current approaches. METHODS: 80 experts in the field of malaria and vector control were invited to participate in a two-round Delphi survey. They were selected through a combination of literature (academic and policy publications) review and snowball sampling reflecting a range of relevant backgrounds including vector control experts, malaria programme managers and emergency response specialists. The survey was conducted online through a questionnaire including the possibility for free text entry, and concentrated on the following topics: 1. Utility and sustainability of current vector control tools, both in and outside emergency settings 2. Feasibility, utility and challenges of emerging vector control tools, both in and outside emergency settings 3. Current and unmet research priorities in malaria vector control and in malaria control in general. RESULTS: 37 experts completed the first round and 31 completed the second round of the survey. There was a stronger consensus about the increased utility of LLIN compared to IRS in all settings, while insecticide-treated covers and blankets ranked very high only in emergency settings. When considering the combination of tools, the ones deemed most interesting always involved LLINs and IRS regardless of the setting, and the acceptability and the efficacy at reducing transmission are essential characteristics. Regarding perceptions of tools currently under development, consensus was towards improvement of existing tools rather than investing in novel approaches and the majority of respondents expressed distrust for genetic approaches. CONCLUSION: Malaria vector control experts expressed more confidence for tools whose efficacy is backed up by epidemiological evidence, hence a preference for the improvement rather than the combination of existing tools. Moreover, while several novel tools are under development, the majority of innovative approaches did not receive support, particularly in emergency settings. Stakeholders involved in the development of novel tools should involve earlier and raise awareness of the potential effectiveness amongst a wider range of experts within the malaria community to increase acceptability and improve early adoption once the evidence base is established.
RESUMO
INTRODUCTION: In rural and difficult-to-access settings, early and accurate recognition of febrile children at risk of progressing to serious illness could contribute to improved patient outcomes and better resource allocation. This study aims to develop a prognostic clinical prediction tool to assist community healthcare providers identify febrile children who might benefit from referral or admission for facility-based medical care. METHODS AND ANALYSIS: This prospective observational study will recruit at least 4900 paediatric inpatients and outpatients under the age of 5 years presenting with an acute febrile illness to seven hospitals in six countries across Asia. A venous blood sample and nasopharyngeal swab is collected from each participant and detailed clinical data recorded at presentation, and each day for the first 48 hours of admission for inpatients. Multianalyte assays are performed at reference laboratories to measure a panel of host biomarkers, as well as targeted aetiological investigations for common bacterial and viral pathogens. Clinical outcome is ascertained on day 2 and day 28.Presenting syndromes, clinical outcomes and aetiology of acute febrile illness will be described and compared across sites. Following the latest guidance in prediction model building, a prognostic clinical prediction model, combining simple clinical features and measurements of host biomarkers, will be derived and geographically externally validated. The performance of the model will be evaluated in specific presenting clinical syndromes and fever aetiologies. ETHICS AND DISSEMINATION: The study has received approval from all relevant international, national and institutional ethics committees. Written informed consent is provided by the caretaker of all participants. Results will be shared with local and national stakeholders, and disseminated via peer-reviewed open-access journals and scientific meetings. TRIAL REGISTRATION NUMBER: NCT04285021.
Assuntos
Modelos Estatísticos , Ásia , Criança , Pré-Escolar , Humanos , Estudos Observacionais como Assunto , Prognóstico , Estudos Prospectivos , Índice de Gravidade de DoençaRESUMO
While modelling is an essential component for an understanding of the epidemiology of malaria, and for designing better control measures, it rarely considers the particular contexts encountered in emergency settings. By linking these situations with the transmission parameters our aim is to correct this bias and call for a better collaboration between relief actors.
Assuntos
Emergências/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Modelos Biológicos , Animais , Humanos , Malária/transmissão , Desastres Naturais , RefugiadosRESUMO
OBJECTIVES: The objective of this study was to address the knowledge gap regarding antibiotic use in Medecins Sans Frontiéres (MSF) projects located in Africa by exploring antibiotic prescription and consumption habits and their drivers at different healthcare levels. DESIGN: This study used an exploratory study design through thematic analysis of semistructured, in-depth interviews, focus group discussions (FGDs) and field observations in order to understand the main drivers influencing current antibiotics prescription habits and consumption habits of patients in different geographical settings. SETTING: The study took place in MSF centres and towns across four countries: Guinea-Bissau, Central African Republic (CAR), Democratic Republic of Congo (DRC) and Sudan. PARTICIPANTS: 384 respondents participated in the study, which includes project staff, prescribers, community members, patients, among other groups. RESULTS: Treatment protocols were physically present in all countries except DRC, but compliance to protocols varied across contexts. A failing health system and barriers to accessing healthcare were perceived as major drivers of overuse and inconsistent prescription practices. Patient demands influenced prescription decisions, and self-medication was commonly reported in the context of failing health systems. Additionally, there was a strong demand for quick cures and communities preferred injections over pills. Patients tended to stop antibiotic treatment once symptoms abated and had major gaps in understanding antibiotic intake instructions and functions. CONCLUSIONS: While there were specific findings in each context, the larger trend from these four MSF projects in Africa indicates widespread use of antibiotics based on unclear assumptions, which are often influenced by patient demands. There needs to be a broader focus on the balance between access and excess, especially in such fragile contexts where access to healthcare is a real challenge.
Assuntos
Antibacterianos , Prescrições , Antibacterianos/uso terapêutico , República Centro-Africana , República Democrática do Congo , Guiné-Bissau , Humanos , SudãoRESUMO
BACKGROUND: Previous controlled studies demonstrated seasonal malaria chemoprevention (SMC) reduces malaria morbidity by >80% in children aged 3-59 months. Here, we assessed malaria morbidity after large-scale SMC implementation during a pilot campaign in the health district of Koutiala, Mali. METHODS: Starting in August 2012, children received three rounds of SMC with sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ). From July 2013 onward, children received four rounds of SMC. Prevalence of malaria infection, clinical malaria and anemia were assessed during two cross-sectional surveys conducted in August 2012 and June 2014. Investigations involved 20 randomly selected clusters in 2012 against 10 clusters in 2014. RESULTS: Overall, 662 children were included in 2012, and 670 in 2014. Children in 2014 versus those surveyed in 2012 showed reduced proportions of malaria infection (12.4% in 2014 versus 28.7% in 2012 (p = 0.001)), clinical malaria (0.3% versus 4.2%, respectively (p < 0.001)), and anemia (50.1% versus 67.4%, respectively (p = 0.001)). A propensity score approach that accounts for environmental differences showed that SMC conveyed a significant protective effect against malaria infection (IR = 0.01, 95% CI (0.0001; 0.09), clinical malaria (OR = 0.25, 95% CI (0.06; 0.85)), and hemoglobin concentration (ß = 1.3, 95% CI (0.69; 1.96)) in 2012 and 2014, respectively. CONCLUSION: SMC significantly reduced frequency of malaria infection, clinical malaria and anemia two years after SMC scale-up in Koutiala.
Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Quimioprevenção , Criança , Pré-Escolar , Estudos Transversais , Combinação de Medicamentos , Feminino , Humanos , Lactente , Malária/epidemiologia , Malária/prevenção & controle , Mali/epidemiologia , Morbidade , Pirimetamina/uso terapêutico , Estações do Ano , Sulfadoxina/uso terapêuticoRESUMO
BACKGROUND: In October 2014, during the Ebola outbreak in Liberia healthcare services were limited while malaria transmission continued. Médecins Sans Frontières (MSF) implemented a mass drug administration (MDA) of malaria chemoprevention (CP) in Monrovia to reduce malaria-associated morbidity. In order to inform future interventions, we described the scale of the MDA, evaluated its acceptance and estimated the effectiveness. METHODS: MSF carried out two rounds of MDA with artesunate/amodiaquine (ASAQ) targeting four neighbourhoods of Monrovia (October to December 2014). We systematically selected households in the distribution area and administered standardized questionnaires. We calculated incidence ratios (IR) of side effects using poisson regression and compared self-reported fever risk differences (RD) pre- and post-MDA using a z-test. FINDINGS: In total, 1,259,699 courses of ASAQ-CP were distributed. All households surveyed (n = 222; 1233 household members) attended the MDA in round 1 (r1) and 96% in round 2 (r2) (212/222 households; 1,154 household members). 52% (643/1233) initiated ASAQ-CP in r1 and 22% (256/1154) in r2. Of those not initiating ASAQ-CP, 29% (172/590) saved it for later in r1, 47% (423/898) in r2. Experiencing side effects in r1 was not associated with ASAQ-CP initiation in r2 (IR 1.0, 95%CI 0.49-2.1). The incidence of self-reported fever decreased from 4.2% (52/1229) in the month prior to r1 to 1.5% (18/1229) after r1 (p<0.001) and decrease was larger among household members completing ASAQ-CP (RD = 4.9%) compared to those not initiating ASAQ-CP (RD = 0.6%) in r1 (p<0.001). CONCLUSIONS: The reduction in self-reported fever cases following the intervention suggests that MDAs may be effective in reducing cases of fever during Ebola outbreaks. Despite high coverage, initiation of ASAQ-CP was low. Combining MDAs with longer term interventions to prevent malaria and to improve access to healthcare may reduce both the incidence of malaria and the proportion of respondents saving their treatment for future malaria episodes.
Assuntos
Antimaláricos/administração & dosagem , Surtos de Doenças , Doença pelo Vírus Ebola/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Feminino , Humanos , Libéria/epidemiologia , MasculinoRESUMO
BACKGROUND: Seasonal malaria chemoprevention (SMC) with sulphadoxine-pyrimethamine (SP) plus amodiaquine (AQ) is being scaled up in Sahelian countries of West Africa. However, the potential development of Plasmodium falciparum resistance to the respective component drugs is a major concern. METHODS: Two cross-sectional surveys were conducted before (August 2012) and after (June 2014) a pilot implementation of SMC in Koutiala, Mali. Children aged 3-59 months received 7 rounds of curative doses of SP plus AQ over two malaria seasons. Genotypes of P. falciparum Pfdhfr codons 51, 59 and 108; Pfdhps codons 437 and 540, Pfcrt codon 76 and Pfmdr1codon 86 were analyzed by PCR on DNA from samples collected before and after SMC, and in non-SMC patient population as controls (November 2014). RESULTS: In the SMC population 191/662 (28.9%) and 85/670 (12.7%) of children were P. falciparum positive by microscopy and were included in the molecular analysis before (2012) and after SMC implementation (2014), respectively. In the non-SMC patient population 220/310 (71%) were successfully PCR analyzed. In the SMC children, the prevalence of all molecular markers of SP resistance increased significantly after SMC including the Pfdhfr-dhps quintuple mutant genotype, which was 1.6% before but 7.1% after SMC (p = 0.02). The prevalence of Pfmdr1-86Y significantly decreased from 26.7% to 15.3% (p = 0.04) while no significant change was seen for Pfcrt 76T. In 2014, prevalence of all molecular markers of SP resistance were significantly higher among SMC children compared to the non-SMC population patient (p < 0.01). No Pfdhfr-164 mutation was found neither at baseline nor post SMC. CONCLUSION: SMC increased the prevalence of molecular markers of P. falciparum resistance to SP in the treated children. However, there was no significant increase of these markers of resistance in the general parasite population after 2 years and 7 rounds of SMC.