Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Semin Cancer Biol ; 73: 101-115, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32931953

RESUMO

Selective estrogen receptor modulators (SERMs) are a class of compounds that bind to estrogen receptors (ERs) and possess estrogen agonist or antagonist actions in different tissues. As such, they are widely used drugs. For instance, tamoxifen, the most prescribed SERM, is used to treat ERα-positive breast cancer. Aside from their therapeutic targets, SERMs have the capacity to broadly affect cellular cholesterol metabolism and handling, mainly through ER-independent mechanisms. Cholesterol metabolism reprogramming is crucial to meet the needs of cancer cells, and different key processes involved in cholesterol homeostasis have been associated with cancer progression. Therefore, the effects of SERMs on cholesterol homeostasis may be relevant to carcinogenesis, either by contributing to the anticancer efficacy of these compounds or, conversely, by promoting resistance to treatment. Understanding these aspects of SERMs actions could help to design more efficacious therapies. Herein we review the effects of SERMs on cellular cholesterol metabolism and handling and discuss their potential in anticancer pharmacology.


Assuntos
Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Humanos , Metabolismo dos Lipídeos/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
2.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35456988

RESUMO

Squalene is a natural bioactive triterpene and an important intermediate in the biosynthesis of sterols. To assess the effect of this compound on the hepatic transcriptome, RNA-sequencing was carried out in two groups of male New Zealand rabbits fed either a diet enriched with 1% sunflower oil or the same diet with 0.5% squalene for 4 weeks. Hepatic lipids, lipid droplet area, squalene, and sterols were also monitored. The Squalene administration downregulated 9 transcripts and upregulated 13 transcripts. The gene ontology of transcripts fitted into the following main categories: transporter of proteins and sterols, lipid metabolism, lipogenesis, anti-inflammatory and anti-cancer properties. When the results were confirmed by RT-qPCR, rabbits receiving squalene displayed significant hepatic expression changes of LOC100344884 (PNPLA3), GCK, TFCP2L1, ASCL1, ACSS2, OST4, FAM91A1, MYH6, LRRC39, LOC108176846, GLT1D1 and TREH. A squalene-enriched diet increased hepatic levels of squalene, lanosterol, dihydrolanosterol, lathosterol, zymostenol and desmosterol. Strong correlations were found among specific sterols and some squalene-changed transcripts. Incubation of the murine AML12 hepatic cell line in the presence of lanosterol, dihydrolanosterol, zymostenol and desmosterol reproduced the observed changes in the expressions of Acss2, Fam91a1 and Pnpla3. In conclusion, these findings indicate that the squalene and post-squalene metabolites play important roles in hepatic transcriptional changes required to protect the liver against malfunction.


Assuntos
Lanosterol , Esqualeno , Aciltransferases , Animais , Desmosterol/metabolismo , Desmosterol/farmacologia , Lanosterol/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Fosfolipases A2 Independentes de Cálcio/metabolismo , Coelhos , Esqualeno/farmacologia , Esteróis/metabolismo , Transcriptoma
3.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920193

RESUMO

Atypical or second-generation antipsychotics are used in the treatment of psychosis and behavioral problems in older persons with dementia. However, these pharmaceutical drugs are associated with an increased risk of stroke in such patients. In this study, we evaluated the effects of risperidone treatment on phospholipid and sphingolipid composition and lipid raft function in peripheral blood mononuclear cells (PBMCs) of older patients (mean age >88 years). The results showed that the levels of dihydroceramides, very-long-chain ceramides, and lysophosphatidylcholines decreased in PBMCs of the risperidone-treated group compared with untreated controls. These findings were confirmed by in vitro assays using human THP-1 monocytes. The reduction in the levels of very-long-chain ceramides and dihydroceramides could be due to the decrease in the expression of fatty acid elongase 3, as observed in THP-1 monocytes. Moreover, risperidone disrupted lipid raft domains in the plasma membrane of PBMCs. These results indicated that risperidone alters phospholipid and sphingolipid composition and lipid raft domains in PBMCs of older patients, potentially affecting multiple signaling pathways associated with these membrane domains.


Assuntos
Ceramidas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Transtornos Psicóticos/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Antipsicóticos/farmacologia , Membrana Celular/genética , Membrana Celular/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Metabolismo dos Lipídeos/genética , Lisofosfolipídeos/genética , Masculino , Olanzapina/farmacologia , Transtornos Psicóticos/sangue , Transtornos Psicóticos/patologia , Risperidona/farmacologia , Esfingolipídeos/genética
4.
Circulation ; 140(3): 225-239, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31154825

RESUMO

BACKGROUND: Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear. METHODS: Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy. RESULTS: We found that absence of Cav1 significantly suppressed atherogenesis in Ldlr-/-eNOS-/- mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice. CONCLUSIONS: These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production.


Assuntos
Aterosclerose/metabolismo , Caveolina 1/fisiologia , Endotélio Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transcitose/fisiologia , Animais , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Células Cultivadas , Cães , Endotélio Vascular/patologia , Ativação Enzimática/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
5.
FASEB J ; 33(3): 3912-3921, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30496704

RESUMO

Atherosclerosis is a chronic disease characterized by vascular lipid retention and inflammation, and pattern recognition receptors (PRRs) are important contributors in early stages of the disease. Given the implication of the intracellular PRR nucleotide-binding oligomerization domain 1 (NOD1) in cardiovascular diseases, we investigated its contribution to early atherosclerosis. We evidenced NOD1 induction in atherosclerotic human and mouse tissues, predominantly in vascular endothelial cells. Accordingly, NOD1 genetic inactivation in Apoe-/- mice reduced not only atherosclerosis burden, but also monocyte and neutrophil accumulation in atheromata. Of note, in the presence of either peptidoglycan or oxidized LDLs, endothelial NOD1 triggered VCAM-1 up-regulation through the RIP2-NF-κB axis in an autocrine manner, enhancing firm adhesion of both sets of myeloid cells to the inflamed micro- and macrovasculature in vivo. Our data define a major proatherogenic role for endothelial NOD1 in early leukocyte recruitment to the athero-prone vasculature, thus introducing NOD1 as an innovative therapeutic target and potential prognostic molecule.-González-Ramos, S., Paz-García, M., Rius, C., del Monte-Monge, A., Rodríguez, C., Fernández-García, V., Andrés, V., Martínez-González, J., Lasunción, M. A., Martín-Sanz, P., Soehnlein, O., Boscá, L. Endothelial NOD1 directs myeloid cell recruitment in atherosclerosis through VCAM-1.


Assuntos
Aterosclerose/metabolismo , Movimento Celular , Endotélio Vascular/metabolismo , Células Mieloides/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Comunicação Autócrina , Células Cultivadas , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/fisiologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 958-967, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29793057

RESUMO

Experimental autoimmune encephalomyelitis (EAE), the most common model for multiple sclerosis, is characterized by inflammatory cell infiltration into the central nervous system and demyelination. Previous studies have demonstrated that administration of some polyphenols may reduce the neurological alterations of EAE. In this work, we show that ellagic acid, a polyphenolic compound, is beneficial in EAE, most likely through stimulation of ceramide biosynthesis within the brain. EAE was induced in Lewis rats by injection of guinea-pig spinal cord tissue along with Freund's complete adjuvant containing Mycobacterium tuberculosis. Clinical signs first appeared at day 8 post-immunization and reached a peak within 3 days, coincident with reduction of myelin basic protein (MBP) in the cortex. Sphingolipids, the other major components of myelin, also decreased at the acute phase of EAE, both in the cerebral cortex and in the spinal cord. In rats receiving ellagic acid in the drinking water from 2 days before immunization, the onset of the disease was delayed and clinical signs were reduced. This amelioration of clinical signs was accompanied by sustained levels of both MBP and sphingolipid in the cortex, without apparent changes in infiltration of inflammatory CD3+ T-cells, microglial activation, or weight loss, which together suggest a neuroprotective effect of ellagic acid. Finally, in glioma and oligodendroglioma cells we demonstrate that urolithins, the ellagic acid metabolites that circulate in plasma, stimulate the synthesis of ceramide. Together these data suggest that ellagic acid consumption protects against demyelination in rats with induced EAE, likely by a mechanism involving sphingolipid synthesis.


Assuntos
Anti-Inflamatórios/farmacologia , Ceramidas/agonistas , Ácido Elágico/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Linhagem Celular Tumoral , Ceramidas/biossíntese , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Cumarínicos/metabolismo , Cumarínicos/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Adjuvante de Freund/administração & dosagem , Expressão Gênica , Cobaias , Mycobacterium tuberculosis/química , Proteína Básica da Mielina/agonistas , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ratos , Ratos Endogâmicos Lew , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
7.
Gastroenterology ; 150(3): 650-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26602218

RESUMO

BACKGROUND & AIMS: Reducing postprandial triglyceridemia may be a promising strategy to lower the risk of cardiovascular disorders associated with obesity and type 2 diabetes. In enterocytes, scavenger receptor class B, type 1 (SR-B1, encoded by SCARB1) mediates lipid-micelle sensing to promote assembly and secretion of chylomicrons. The nuclear receptor subfamily 1, group H, members 2 and 3 (also known as liver X receptors [LXRs]) regulate genes involved in cholesterol and fatty acid metabolism. We aimed to determine whether intestinal LXRs regulate triglyceride absorption. METHODS: C57BL/6J mice were either fed a cholesterol-enriched diet or given synthetic LXR agonists (GW3965 or T0901317). We measured the production of chylomicrons and localized SR-B1 by immunohistochemistry. Mechanisms of postprandial triglyceridemia and SR-B1 regulation were studied in Caco-2/TC7 cells incubated with LXR agonists. RESULTS: In mice and in the Caco-2/TC7 cell line, LXR agonists caused localization of intestinal SR-B1 from apical membranes to intracellular organelles and reduced chylomicron secretion. In Caco-2/TC7 cells, LXR agonists reduced SR-B1-dependent lipidic-micelle-induced Erk phosphorylation. LXR agonists also reduced intracellular trafficking of the apical apolipoprotein B pool toward secretory compartments. LXR reduced levels of SR-B1 in Caco-2/TC7 cells via a post-transcriptional mechanism that involves microRNAs. CONCLUSION: In Caco-2/TC7 cells and mice, intestinal activation of LXR reduces the production of chylomicrons by a mechanism dependent on the apical localization of SR-B1.


Assuntos
Absorção Intestinal , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Receptores Nucleares Órfãos/metabolismo , Receptores Depuradores Classe B/metabolismo , Triglicerídeos/metabolismo , Animais , Apolipoproteína B-100/metabolismo , Apolipoproteínas B/metabolismo , Benzoatos/farmacologia , Benzilaminas/farmacologia , Células CACO-2 , Colesterol na Dieta/metabolismo , Quilomícrons/metabolismo , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Regulação para Baixo , Humanos , Hidrocarbonetos Fluorados/farmacologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Receptores X do Fígado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores Nucleares Órfãos/agonistas , Transporte Proteico , Interferência de RNA , Ribonuclease III/deficiência , Ribonuclease III/genética , Receptores Depuradores Classe B/deficiência , Receptores Depuradores Classe B/genética , Transdução de Sinais , Sulfonamidas/farmacologia , Transcrição Gênica , Transfecção
8.
Biochim Biophys Acta ; 1851(9): 1240-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26055626

RESUMO

The mevalonate pathway is tightly linked to cell division. Mevalonate derived non-sterol isoprenoids and cholesterol are essential for cell cycle progression and mitosis completion respectively. In the present work, we studied the effects of fluoromevalonate, a competitive inhibitor of mevalonate diphosphate decarboxylase, on cell proliferation and cell cycle progression in both HL-60 and MOLT-4 cells. This enzyme catalyzes the synthesis of isopentenyl diphosphate, the first isoprenoid in the cholesterol biosynthesis pathway, consuming ATP at the same time. Inhibition of mevalonate diphosphate decarboxylase was followed by a rapid accumulation of mevalonate diphosphate and the reduction of ATP concentrations, while the cell content of cholesterol was barely affected. Strikingly, mevalonate diphosphate decarboxylase inhibition also resulted in the depletion of dNTP pools, which has never been reported before. These effects were accompanied by inhibition of cell proliferation and cell cycle arrest at S phase, together with the appearance of γ-H2AX foci and Chk1 activation. Inhibition of Chk1 in cells treated with fluoromevalonate resulted in premature entry into mitosis and massive cell death, indicating that the inhibition of mevalonate diphosphate decarboxylase triggered a DNA damage response. Notably, the supply of exogenously deoxyribonucleosides abolished γ-H2AX formation and prevented the effects of mevalonate diphosphate decarboxylase inhibition on DNA replication and cell growth. The results indicate that dNTP pool depletion caused by mevalonate diphosphate decarboxylase inhibition hampered DNA replication with subsequent DNA damage, which may have important consequences for replication stress and genomic instability.


Assuntos
Carboxiliases/metabolismo , Desoxirribonucleosídeos/metabolismo , Linfócitos/efeitos dos fármacos , Ácido Mevalônico/farmacologia , Trifosfato de Adenosina/metabolismo , Carboxiliases/antagonistas & inibidores , Carboxiliases/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Desoxirribonucleosídeos/farmacologia , Regulação da Expressão Gênica , Células HL-60 , Halogenação , Hemiterpenos/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/metabolismo , Compostos Organofosforados/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
9.
Int J Mol Sci ; 17(3): 404, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26999125

RESUMO

First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit ß (ß-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and ß-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.


Assuntos
Antipsicóticos/farmacologia , Endossomos/efeitos dos fármacos , Haloperidol/farmacologia , Lisossomos/efeitos dos fármacos , Antipsicóticos/efeitos adversos , Colesterol/metabolismo , Endossomos/metabolismo , Haloperidol/efeitos adversos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Metabolismo dos Lipídeos , Lisofosfolipídeos/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Peptídeo Hidrolases/metabolismo , beta-Galactosidase/metabolismo
10.
Plant Foods Hum Nutr ; 71(1): 102-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26872816

RESUMO

The recent description of the presence of exogenous plant microRNAs from rice in human plasma had profound implications for the interpretation of microRNAs function in human health. If validated, these results suggest that food should not be considered only as a macronutrient and micronutrient supplier but it could also be a way of genomic interchange between kingdoms. Subsequently, several studies have tried to replicate these results in rice and other plant foods and most of them have failed to find plant microRNAs in human plasma. In this scenario, we aimed to detect plant microRNAs in beer and extra virgin olive oil (EVOO)--two plant-derived liquid products frequently consumed in Spain--as well as in human plasma after an acute ingestion of EVOO. Our hypothesis was that microRNAs present in beer and EVOO raw material could survive manufacturing processes, be part of these liquid products, be absorbed by human gut and circulate in human plasma. To test this hypothesis, we first optimized the microRNA extraction protocol to extract microRNAs from beer and EVOO, and then tried to detect microRNAs in those samples and in plasma samples of healthy volunteers after an acute ingestion of EVOO.


Assuntos
Cerveja/análise , MicroRNAs/análise , Azeite de Oliva/análise , Oryza/genética , Animais , Ingestão de Alimentos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/sangue , Leite/química , RNA de Plantas/análise , RNA de Plantas/sangue , Análise de Sequência de RNA
11.
J Nutr ; 144(5): 575-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623846

RESUMO

Consumption of the long-chain ω-3 (n-3) polyunsaturated fatty acid docosahexaenoic acid (DHA) is associated with a reduced risk of cardiovascular disease and greater chemoprevention. However, the mechanisms underlying the biologic effects of DHA remain unknown. It is well known that microRNAs (miRNAs) are versatile regulators of gene expression. Therefore, we aimed to determine if the beneficial effects of DHA may be modulated in part through miRNAs. Loss of dicer 1 ribonuclease type III (DICER) in enterocyte Caco-2 cells supplemented with DHA suggested that several lipid metabolism genes are modulated by miRNAs. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that are differentially modulated by fatty acids. Among the miRNAs modulated by DHA were miR-192 and miR-30c. Overexpression of either miR-192 or miR-30c in enterocyte and hepatocyte cells suggested an effect on the expression of genes related to lipid metabolism, some of which were confirmed by endogenous inhibition of these miRNAs. Our results show in enterocytes that DHA exerts its biologic effect in part by regulating genes involved in lipid metabolism and cancer. Moreover, this response is mediated through miRNA activity. We validate novel targets of miR-30c and miR-192 related to lipid metabolism and cancer including nuclear receptor corepressor 2, isocitrate dehydrogenase 1, DICER, caveolin 1, ATP-binding cassette subfamily G (white) member 4, retinoic acid receptor ß, and others. We also present evidence that in enterocytes DHA modulates the expression of regulatory factor X6 through these miRNAs. Alteration of miRNA levels by dietary components in support of their pharmacologic modulation might be valuable in adjunct therapy for dyslipidemia and other related diseases.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Dislipidemias/genética , Enterócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , MicroRNAs/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dislipidemias/metabolismo , Enterócitos/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Células Hep G2 , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/genética , RNA Interferente Pequeno/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
12.
J Lipid Res ; 54(2): 310-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175778

RESUMO

Haloperidol, a typical antipsychotic, has been shown to inhibit cholesterol biosynthesis by affecting Δ(7)-reductase, Δ(8,7)-isomerase, and Δ(14)-reductase activities, which results in the accumulation of different sterol intermediates. In the present work, we investigated the effects of atypical or second-generation antipsychotics (SGA), such as clozapine, risperidone, and ziprasidone, on intracellular lipid metabolism in different cell lines. All the SGAs tested inhibited cholesterol biosynthesis. Ziprasidone and risperidone had the same targets as haloperidol at inhibiting cholesterol biosynthesis, although with different relative activities (ziprasidone > haloperidol > risperidone). In contrast, clozapine mainly affected Δ(24)-reductase and Δ(8,7)-isomerase activities. These amphiphilic drugs also interfered with the LDL-derived cholesterol egress from the endosome/lysosome compartment, thus further reducing the cholesterol content in the endoplasmic reticulum. This triggered a homeostatic response with the stimulation of sterol regulatory element-binding protein (SREBP)-regulated gene expression. Treatment with SGAs also increased the synthesis of complex lipids (phospholipids and triacylglycerides). Once the antipsychotics were removed from the medium, a rebound in the cholesterol biosynthesis rate was detected, and the complex-lipid synthesis further increased. In this condition, apolipoprotein B secretion was also stimulated as demonstrated in HepG2 cells. These effects of SGAs on lipid homeostasis may be relevant in the metabolic side effects of antipsychotics, especially hypertriglyceridemia.


Assuntos
Antipsicóticos/farmacologia , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Acetatos/metabolismo , Apolipoproteína B-100/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Colesterol/biossíntese , LDL-Colesterol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo
14.
Clin Chem ; 58(6): 999-1009, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22427353

RESUMO

BACKGROUND: Abdominal adiposity and obesity influence the association of polycystic ovary syndrome (PCOS) with insulin resistance and diabetes. We aimed to characterize the intermediate metabolism phenotypes associated with PCOS and obesity. METHODS: We applied a nontargeted GC-MS metabolomic approach to plasma samples from 36 patients with PCOS and 39 control women without androgen excess, matched for age, body mass index, and frequency of obesity. RESULTS: Patients with PCOS were hyperinsulinemic and insulin resistant compared with the controls. The increase in plasma long-chain fatty acids, such as linoleic and oleic acid, and glycerol in the obese patients with PCOS suggests increased lipolysis, possibly secondary to impaired insulin action at adipose tissue. Conversely, nonobese patients with PCOS showed a metabolic profile consisting of suppression of lipolysis and increased glucose utilization (increased lactic acid concentrations) in peripheral tissues, and PCOS patients as a whole showed decreased 2-ketoisocaproic and alanine concentrations, suggesting utilization of branched-chain amino acids for protein synthesis and not for gluconeogenesis. These metabolic processes required effective insulin signaling; therefore, insulin resistance was not universal in all tissues of these women, and different mechanisms possibly contributed to their hyperinsulinemia. PCOS was also associated with decreased α-tocopherol and cholesterol concentrations irrespective of obesity. CONCLUSIONS: Substantial metabolic heterogeneity, strongly influenced by obesity, underlies PCOS. The possibility that hyperinsulinemia may occur in the absence of universal insulin resistance in nonobese women with PCOS should be considered when designing diagnostic and therapeutic strategies for the management of this prevalent disorder.


Assuntos
Metaboloma , Obesidade/metabolismo , Síndrome do Ovário Policístico/metabolismo , Adulto , Aminoácidos de Cadeia Ramificada/metabolismo , Estudos de Casos e Controles , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Humanos , Hiperinsulinismo/complicações , Hiperinsulinismo/metabolismo , Resistência à Insulina , Lipólise , Obesidade/complicações , Plasma , Síndrome do Ovário Policístico/complicações , Pré-Menopausa , Adulto Jovem
15.
Mol Biol Rep ; 39(4): 4831-5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21938426

RESUMO

Adiponectin is an adipose tissue-specific hormone which is inversely associated with metabolic alterations related to atherosclerosis. Polymorphisms in the adiponectin gene (AdipoQ) have been related to low adiponectin levels as well as several cardiovascular risk factors, but this association remains controversial. In our study we investigated the relationship between the AdipoQ T45G (rs: 2241766) and G276T (rs: 1501299) polymorphisms and adiponectin concentrations, blood pressure, and lipid and insulin levels, in a population-based sample of 12- to 16-year-old children. The study included 815 healthy Spanish children (388 boys and 427 girls). Plasma glucose and lipid levels were determined by standard methods. Insulin concentrations were measured by RIA, and serum adiponectin levels were determined by ELISA. The AdipoQ T45G and AdipoQ G276T polymorphisms were determined by TaqMan(®) allelic discrimination assays. ANOVA or t test allowed for comparison of the studied parameters across genotypes or genotype groups, respectively. A linear regression analysis was performed to examine the independent relationships of the lipid variables with BMI (body mass index), AdipoQ G276T polymorphism and the interaction between the two. When independently comparing the effect of these polymorphisms in normal-weight and overweight children, we observed that overweight boys carriers of the minor allele T had significantly lower TC, LDL-C and apo A-I levels than non-carriers, but these differences were not apparent in normal-weight boys. Furthermore, linear regression analysis demonstrated that interaction between the BMI and the AdipoQ G276T polymorphism is a significant factor explaining the variations of TC and LDL-C levels. To our knowledge, this is the first study to report an association between the AdipoQ G276T polymorphism and lipid levels in overweight boys alone, thereby suggesting that the influence of the AdipoQ polymorphisms on cardiovascular risk factors may be dependent on BMI.


Assuntos
Adiponectina/genética , Índice de Massa Corporal , Saúde , Lipídeos/sangue , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Criança , Feminino , Genótipo , Humanos , Masculino , Sobrepeso/sangue , Sobrepeso/genética , Análise de Regressão
16.
Biochem Pharmacol ; 196: 114623, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34052188

RESUMO

The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.


Assuntos
Ciclo Celular/fisiologia , Colesterol/metabolismo , Ácido Mevalônico/metabolismo , Esteróis/metabolismo , Terpenos/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Biomedicines ; 10(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35740338

RESUMO

Exosomes/microvesicles originate from multivesicular bodies that allow the secretion of endolysosome components out of the cell. In the present work, we investigated the effects of rottlerin, a polyphenol, on exosome/microvesicle secretion in a model of intracellular lipid trafficking impairment, and elucidated the mechanism of action. In a model of lipid trafficking impairment in C6 glia cells, rottlerin increased ceramide levels, while decreasing hexosylceramide content. This was accompanied by increased exosome/microvesicle secretion, thereby reducing the concentration of lipids in the endolysosomal compartment. The reduction of hexosylceramide levels by rottlerin was attributed to the increase of ß-glucosidase (glucosylceramidase) activity, and the effects of rottlerin were abrogated by ß-glucosidase inhibitors such as isofagomine D-tartrate and AMP-deoxynojirimycin. Moreover, treatment with ML-266, a potent activator of the ß-glucosidase enzyme, recapitulated the effects of rottlerin on the sphingolipid profile and exosome/microvesicle secretion. Finally, inhibition of AMPK (AMP-activated protein kinase) using compound C prevented both exosome/microvesicle secretion and the elimination of endolysosome lipids, which were promoted by rottlerin. The results showed that the decrease in intracellular lipid deposition induced by rottlerin was mediated by ß-glucosidase activation and exosome/microvesicle release via the AMPK pathway. Rottlerin consumption could represent an additional health benefit in lysosomal deposition diseases.

18.
Nat Commun ; 12(1): 6448, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750386

RESUMO

Intricate regulatory networks govern the net balance of cholesterol biosynthesis, uptake and efflux; however, the mechanisms surrounding cholesterol homeostasis remain incompletely understood. Here, we develop an integrative genomic strategy to detect regulators of LDLR activity and identify 250 genes whose knockdown affects LDL-cholesterol uptake and whose expression is modulated by intracellular cholesterol levels in human hepatic cells. From these hits, we focus on MMAB, an enzyme which catalyzes the conversion of vitamin B12 to adenosylcobalamin, and whose expression has previously been linked with altered levels of circulating cholesterol in humans. We demonstrate that hepatic levels of MMAB are modulated by dietary and cellular cholesterol levels through SREBP2, the master transcriptional regulator of cholesterol homeostasis. Knockdown of MMAB decreases intracellular cholesterol levels and augments SREBP2-mediated gene expression and LDL-cholesterol uptake in human and mouse hepatic cell lines. Reductions in total sterol content were attributed to increased intracellular levels of propionic and methylmalonic acid and subsequent inhibition of HMGCR activity and cholesterol biosynthesis. Moreover, mice treated with antisense inhibitors of MMAB display a significant reduction in hepatic HMGCR activity, hepatic sterol content and increased expression of SREBP2-mediated genes. Collectively, these findings reveal an unexpected role for the adenosylcobalamin pathway in regulating LDLR expression and identify MMAB as an additional control point by which cholesterol biosynthesis is regulated by its end product.


Assuntos
Colesterol/metabolismo , Retroalimentação Fisiológica , Homeostase , Fígado/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Linhagem Celular Tumoral , LDL-Colesterol/metabolismo , Perfilação da Expressão Gênica/métodos , Células HeLa , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Interferência de RNA , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
19.
Biomed Pharmacother ; 141: 111871, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34225017

RESUMO

Selective estrogen receptor modulators (SERMs) are nonsteroidal drugs that display an estrogen-agonist or estrogen-antagonist effect depending on the tissue targeted. SERMs have attracted great clinical interest for the treatment of several pathologies, most notably breast cancer and osteoporosis. There is strong evidence that SERMs secondarily affect cholesterol metabolism, although the mechanism has not been fully elucidated. In this study, we analysed the effect of the SERMs tamoxifen, raloxifene, and toremifene on the expression of lipid metabolism genes by microarrays and quantitative PCR in different cell types, and ascertained the main mechanisms involved. The three SERMs increased the expression of sterol regulatory element-binding protein (SREBP) target genes, especially those targeted by SREBP-2. In consonance, SERMs increased SREBP-2 processing. These effects were associated to the interference with intracellular LDL-derived cholesterol trafficking. When the cells were exposed to LDL, but not to cholesterol/methyl-cyclodextrin complexes, the SERM-induced increases in gene expression were synergistic with those induced by lovastatin. Furthermore, the SERMs reduced the stimulation of the transcriptional activity of the liver X receptor (LXR) by exogenous cholesterol. However, their impact on the expression of the LXR canonical target ABCA1 in the presence of LDL was cell-type dependent. These actions of SERMs were independent of estrogen receptors. We conclude that, by inhibiting the intracellular trafficking of LDL-derived cholesterol, SERMs promote the activation of SREBP-2 and prevent the activation of LXR, two master regulators of cellular cholesterol metabolism. This study highlights the impact of SERMs on lipid homeostasis regulation beyond their actions as estrogen receptor modulators.


Assuntos
Colesterol/metabolismo , Homeostase/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , LDL-Colesterol/metabolismo , Células Hep G2 , Homeostase/fisiologia , Humanos , Receptores X do Fígado/antagonistas & inibidores , Células MCF-7
20.
Food Funct ; 12(17): 8141-8153, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34291245

RESUMO

To evaluate the effects of squalene, the main unsaponifiable component of virgin olive oil, on lipid metabolism, two groups of male New Zealand rabbits were fed a 1% sunflower oil-enriched regular diet or the same diet containing 0.5% squalene for 4 weeks. Plasma triglycerides, total- and HDL-cholesterol and their lipoproteins were assayed. Analyses of hepatic lipid droplets, triglycerides, total- and non-esterified cholesterol, squalene, protein and gene expression, and cholesterol precursors were carried out. In the jejunum, the squalene content and mRNA and protein APOB expressions were measured. Finally, we studied the effect of cholesterol precursors in AML12 cells. Squalene administration significantly increased plasma total cholesterol, mainly carried as non-esterified cholesterol in IDL and large LDL, and corresponded to an increased number of APOB100-containing particles without accumulation of triglycerides and decreased reactive oxygen species. Despite no significant changes in the APOB content in the jejunum, the latter displayed increased APOB mRNA and squalene levels. Increases in the amounts of non-esterified cholesterol, squalene, lanosterol, dihydrolanosterol, lathosterol, cholestanol, zymostenol, desmosterol and caspase 1 were also observed in the liver. Incubation of AML12 cells in the presence of lanosterol increased caspase 1. In conclusion, squalene administration in rabbits increases the number of modified APOB-containing lipoproteins, and hepatic cholesterol biosynthesis is linked to caspase 1 probably through lanosterol.


Assuntos
Colesterol/metabolismo , Hipercolesterolemia/dietoterapia , Lipoproteínas/sangue , Fígado/metabolismo , Esqualeno/metabolismo , Animais , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Colesterol/sangue , HDL-Colesterol/sangue , Humanos , Hipercolesterolemia/sangue , Masculino , Coelhos , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA