RESUMO
The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.
RESUMO
Next-generation mid-infrared (MIR) imaging chips demand free-cooling capability and high-level integration. The rising two-dimensional (2D) semimetals with excellent infrared (IR) photoresponses are compliant with these requirements. However, challenges remain in scalable growth and substrate-dependence for on-chip integration. Here, we demonstrate the inch-level 2D palladium ditelluride (PdTe2) Dirac semimetal using a low-temperature self-stitched epitaxy (SSE) approach. The low formation energy between two precursors facilitates low-temperature multiple-point nucleation (â¼300 °C), growing up, and merging, resulting in self-stitching of PdTe2 domains into a continuous film, which is highly compatible with back-end-of-line (BEOL) technology. The uncooled on-chip PdTe2/Si Schottky junction-based photodetector exhibits an ultrabroadband photoresponse of up to 10.6 µm with a large specific detectivity. Furthermore, the highly integrated device array demonstrates high-resolution room-temperature imaging capability, and the device can serve as an optical data receiver for IR optical communication. This study paves the way toward low-temperature growth of 2D semimetals for uncooled MIR sensing.
RESUMO
A recent study of liquid sulfur produced in an electrochemical cell has prompted further investigation into regulating Li-S oxidation chemistry. In this research, we examined the liquid-to-solid sulfur transition dynamics by visually observing the electrochemical generation of sulfur on a graphene-based substrate. We investigated the charging of polysulfides at various current densities and discovered a quantitative correlation between the size and number density of liquid sulfur droplets and the applied current. However, the areal capacities exhibited less sensitivity. This observation offers valuable insights for designing fast-charging sulfur cathodes. By incorporating liquid sulfur into Li-S batteries with a high sulfur loading of 4.2 mg cm-2, the capacity retention can reach â¼100%, even when increasing the rate from 0.1 to 3 C. This study contributes to a better understanding of the kinetics involved in the liquid-solid sulfur growth in Li-S chemistry and presents viable strategies for optimizing fast-charging operations.
RESUMO
Deciphering the atomic and electronic structures of interfaces is key to developing state-of-the-art perovskite semiconductors. However, conventional characterization techniques have limited previous studies mainly to grain-boundary interfaces, whereas the intragrain-interface microstructures and their electronic properties have been much less revealed. Herein using scanning transmission electron microscopy, we resolved the atomic-scale structural information on three prototypical intragrain interfaces, unraveling intriguing features clearly different from those from previous observations based on standalone films or nanomaterial samples. These intragrain interfaces include composition boundaries formed by heterogeneous ion distribution, stacking faults resulted from wrongly stacked crystal planes, and symmetrical twinning boundaries. The atomic-scale imaging of these intragrain interfaces enables us to build unequivocal models for the ab initio calculation of electronic properties. Our results suggest that these structure interfaces are generally electronically benign, whereas their dynamic interaction with point defects can still evoke detrimental effects. This work paves the way toward a more complete fundamental understanding of the microscopic structure-property-performance relationship in metal halide perovskites.
RESUMO
Two-dimensional materials provide opportunities for developing semiconductor applications at atomistic thickness to break the limits of silicon technology. Black phosphorus (BP), as a layered semiconductor with controllable bandgap and high carrier mobility, is one of the most promising candidates for transistor devices at atomistic thickness1-4. However, the lack of large-scale growth greatly hinders its development in devices. Here, we report the growth of ultrathin BP on the centimetre scale through pulsed laser deposition. The unique plasma-activated region induced by laser ablation provides highly desirable conditions for BP cluster formation and transportation5,6, facilitating growth. Furthermore, we fabricated large-scale field-effect transistor arrays on BP films, yielding appealing hole mobility of up to 213 and 617 cm2 V-1 s-1 at 295 and 250 K, respectively. Our results pave the way for further developing BP-based wafer-scale devices with potential applications in the information industry.
RESUMO
Work function strongly impacts the surficial charge distribution, especially for metal-support electrocatalysts when a built-in electric field (BEF) is constructed. Therefore, studying the correlation between work function and BEF is crucial for understanding the intrinsic reaction mechanism. Herein, we present a Pt@CoOx electrocatalyst with a large work function difference (ΔΦ) and strong BEF, which shows outstanding hydrogen evolution activity in a neutral medium with a 4.5-fold mass activity higher than 20 % Pt/C. Both experimental and theoretical results confirm the interfacial charge redistribution induced by the strong BEF, thus subtly optimizing hydrogen and hydroxide adsorption energy. This work not only provides fresh insights into the neutral hydrogen evolution mechanism but also proposes new design principles toward efficient electrocatalysts for hydrogen production in a neutral medium.
RESUMO
The formation, propagation, and structure of nanoscale cracks determine the failure mechanics of engineered materials. Herein, we have captured, with atomic resolution and in real time, unit cell-by-unit cell lattice-trapped cracking in two-dimensional (2D) rhenium disulfide (ReS_{2}) using in situ aberration corrected scanning transmission electron microscopy (STEM). Our real time observations of atomic configurations and corresponding strain fields in propagating cracks directly reveal the atomistic fracture mechanisms. The entirely brittle fracture with non-blunted crack tips as well as perfect healing of cracks have been observed. The mode I fracture toughness of 2D ReS_{2} is measured. Our experiments have bridged the linear elastic deformation zone and the ultimate nm-sized nonlinear deformation zone inside the crack tip. The dynamics of fracture has been explained by the atomic lattice trapping model. The direct visualization on the strain field in the ongoing crack tips and the gained insights of discrete bond breaking or healing in cracks will facilitate deeper insights into how atoms are able to withstand exceptionally large strains at the crack tips.
RESUMO
Two-dimensional (2D) metallic transition metal dichalcogenides (TMDs) exhibit fascinating quantum effects, such as charge-density-wave (CDW) and weak antilocalization (WAL) effect. Herein, low temperature synthesis of 1T phase VSe2 single crystals with thickness ranging from 3 to 41 nm by chemical vapor deposition (CVD) is reported. The VSe2 shows a decreasing phase transition temperature of the CDW when the thickness is decreased. Moreover, low-temperature magnetotransport measurements demonstrate a linear positive and non-saturating magnetoresistance (MR) of 35% from a 35 nm thick VSe2 at 15 T and 2 K due to CDW induce mobility fluctuations. Surprisingly, Kohler's rule analysis of the MR reveals the non-applicability of Kohler's rule for temperature above 50 K indicating that the MR behavior cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Furthermore, WAL effect is observed in the 4.2 nm thick VSe2 at low magnetic fields at 2 K, revealing the contribution of the quantum interference effect at the 2D limit. The phase coherence length [Formula: see text] and spin-orbit scattering length [Formula: see text] were determined to be 73 nm and 18 nm at 2 K, respectively. Our work opens new avenues to study the fundamental quantum phenomena in CVD-deposited TMDs.
RESUMO
By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm(2) and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultrahigh efficiency photovoltaic cells in the future.
RESUMO
Although organic photovoltaic devices (OPVs) have been investigated for more than two decades, the power conversion efficiencies of OPVs are much lower than those of inorganic or perovskite solar cells. One effective approach to improve the efficiency of OPVs is to introduce additives to enhance light harvesting as well as charge transportation in the devices. Here, black phosphorus quantum dots (BPQDs) are introduced in OPVs as an additive. By adding 0.055 wt % BPQDs relative to the polymer donors in the OPVs, the device efficiencies can be dramatically improved for more than 10 %. The weight percentage is much lower than that of any other additive used in OPVs before, which is mainly due to the two-dimentional structure as well as the strong broadband light absorption and scattering of the BPQDs. This work paves a way for using two-dimentional quantum dots in OPVs as a cost-effective approach to enhance device efficiencies.
RESUMO
Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.
RESUMO
We report a new mechanistic strategy for controlling and modifying the photon emission of lanthanides in a core-shell nanostructure by using interfacial energy transfer. By taking advantage of this mechanism with Gd(3+) as the energy donor, we have realized efficient up- and down-converted emissions from a series of lanthanide emitters (Eu(3+) , Tb(3+) , Dy(3+) , and Sm(3+) ) in these core-shell nanoparticles, which do not need a migratory host sublattice. Moreover, we have demonstrated that the Gd(3+) -mediated interfacial energy transfer, in contrast to energy migration, is the leading process contributing to the photon emission of lanthanide dopants for the NaGdF4 @NaGdF4 core-shell system. Our finding suggests a new direction for research into better control of energy transfer at the nanometer length scale, which would help to stimulate new concepts for designing and improving photon emission of the lanthanide-based luminescent materials.
RESUMO
Gallium selenide, an important second-order nonlinear semiconductor, has received much scientific interest. However, the nonlinear properties in its two-dimensional (2D) form are still unknown. A strong second harmonic generation (SHG) in bilayer and multilayer GaSe sheets is reported. This is also the first observation of SHG on 2D GaSe thin layers. The SHG of multilayer GaSe above five layers shows a quadratic dependence on the thickness; while that of a sheet thinner than five layers shows a cubic dependence. The discrepancy between the two SHG responses is attributed to the weakened stability of non-centrosymmetric GaSe in the atomically thin flakes where a layer-layer stacking order tends to favor centrosymmetric modification. Importantly, two-photon excited fluorescence has also been observed in the GaSe sheets. Our free-energy calculations based on first-principles methods support the observed nonlinear optical phenomena of the atomically thin layers.
RESUMO
We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long-term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035â F g(-1) (91.7â mF cm(-2)). Paper-based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3â Wh kg(-1) and a power density of 81â kW kg(-1). The device could maintain a 98.9% capacitance retention over 10 000 cycles at 4â A g(-1). The MnO2 ink could be a versatile candidate for large-scale production of flexible and printable electronic devices for energy storage and conversion.
RESUMO
Intragrain impurities can impart detrimental effects on the efficiency and stability of perovskite solar cells, but they are indiscernible to conventional characterizations and thus remain unexplored. Using in situ scanning transmission electron microscopy, we reveal that intragrain impurity nano-clusters inherited from either the solution synthesis or post-synthesis storage can revert to perovskites upon irradiation stimuli, leading to the counterintuitive amendment of crystalline grains. In conjunction with computational modelling, we atomically resolve crystallographic transformation modes for the annihilation of intragrain impurity nano-clusters and probe their impacts on optoelectronic properties. Such critical fundamental findings are translated for the device advancement. Adopting a scanning laser stimulus proven to heal intragrain impurity nano-clusters, we simultaneously boost the efficiency and stability of formamidinium-cesium perovskite solar cells, by virtual of improved optoelectronic properties and relaxed intra-crystal strain, respectively. This device engineering, inspired and guided by atomic-scale in situ microscopic imaging, presents a new prototype for solar cell advancement.
RESUMO
We report the observation of an electric field in twisted-bilayer molybdenum disulfide (MoS2) and elucidate its correlation with local polar domains using four-dimensional scanning transmission electron microscopy (4D-STEM) and first-principles calculations. We reveal the emergence of in-plane topological vortices within the periodic moiré patterns for both commensurate structures at small twist angles and the incommensurate quasicrystal structure that occurs at a 30° twist. The large-angle twist leads to mosaic chiral vortex patterns with tunable characteristics. A twisted quasicrystal bilayer, characterized by its 12-fold rotational symmetry, hosts complex vortex patterns and can be manipulated by picometer-scale interlayer displacement. Our findings highlight that twisting 2D bilayers is a versatile strategy for tailoring local electric polar vortices.
RESUMO
Designing high-performance thermal catalysts with stable catalytic sites is an important challenge. Conventional wisdom holds that strong metal-support interactions can benefit the catalyst performance, but there is a knowledge gap in generalizing this effect across different metals. Here, we have successfully developed a generalizable strong metal-support interaction strategy guided by Tammann temperatures of materials, enabling functional oxide encapsulation of transition metal nanocatalysts. As an illustrative example, Co@BaAl2O4 core@shell is synthesized and tracked in real-time through in-situ microscopy and spectroscopy, revealing an unconventional strong metal-support interaction encapsulation mechanism. Notably, Co@BaAl2O4 exhibits exceptional activity relative to previously reported core@shell catalysts, displaying excellent long-term stability during high-temperature chemical reactions and overcoming the durability and reusability limitations of conventional supported catalysts. This pioneering design and widely applicable approach has been validated to guide the encapsulation of various transition metal nanoparticles for environmental tolerance functionalities, offering great potential to advance energy, catalysis, and environmental fields.
RESUMO
Engineering piezo/ferroelectricity in two-dimensional materials holds significant implications for advancing the manufacture of state-of-the-art multifunctional materials. The inborn nonstoichiometric propensity of two-dimensional transition metal dichalcogenides provides a spiffy ready-available solution for breaking inversion centrosymmetry, thereby conducing to circumvent size effect challenges in conventional perovskite oxide ferroelectrics. Here, we show the extendable and ubiquitous piezo/ferroelectricity within nonstoichiometric two-dimensional transition metal dichalcogenides that are predominantly centrosymmetric during standard stoichiometric cases. The emerged piezo/ferroelectric traits are aroused from the sliding of van der Waals layers and displacement of interlayer metal atoms triggered by the Frankel defects of heterogeneous interlayer native metal atom intercalation. We demonstrate two-dimensional chromium selenides nanogenerator and iron tellurides ferroelectric multilevel memristors as two representative applications. This innovative approach to engineering piezo/ferroelectricity in ultrathin transition metal dichalcogenides may provide a potential avenue to consolidate piezo/ferroelectricity with featured two-dimensional materials to fabricate multifunctional materials and distinguished multiferroic.
RESUMO
Memory transistors based on two-dimensional (2D) ferroelectric semiconductors are intriguing for next-generation in-memory computing. To date, several 2D ferroelectric materials have been unveiled, among which 2D In2Se3 is the most promising, as all the paraelectric (ß), ferroelectric (α) and antiferroelectric (ß') phases are found in 2D quintuple layers. However, the large-scale synthesis of 2D In2Se3 films with the desired phase is still absent, and the stability for each phase remains obscure. Here we show the successful growth of centimetre-scale 2D ß-In2Se3 film by chemical vapour deposition including distinct centimetre-scale 2D ß'-In2Se3 film by an InSe precursor. We also demonstrate that as-grown 2D ß'-In2Se3 films on mica substrates can be delaminated or transferred onto flexible or uneven substrates, yielding α-In2Se3 films through a complete phase transition. Thus, a full spectrum of paraelectric, ferroelectric and antiferroelectric 2D films can be readily obtained by means of the correlated polymorphism in 2D In2Se3, enabling 2D memory transistors with high electron mobility, and polarizable ß'-α In2Se3 heterophase junctions with improved non-volatile memory performance.
RESUMO
Two-dimensional materials with out-of-plane (OOP) ferroelectric and piezoelectric properties are highly desirable for the realization of ultrathin ferro- and piezoelectronic devices. We demonstrate unexpected OOP ferroelectricity and piezoelectricity in untwisted, commensurate, and epitaxial MoS2/WS2 heterobilayers synthesized by scalable one-step chemical vapor deposition. We show d33 piezoelectric constants of 1.95 to 2.09 picometers per volt that are larger than the natural OOP piezoelectric constant of monolayer In2Se3 by a factor of ~6. We demonstrate the modulation of tunneling current by about three orders of magnitude in ferroelectric tunnel junction devices by changing the polarization state of MoS2/WS2 heterobilayers. Our results are consistent with density functional theory, which shows that both symmetry breaking and interlayer sliding give rise to the unexpected properties without the need for invoking twist angles or moiré domains.