Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Food Sci Nutr ; 70(6): 701-713, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30810427

RESUMO

The study aimed at improving the nutritional profile of yeast leavened salt reduced sliced bread and puccia type bread fortified with a wheat-based Lactobacillus plantarum ITM21B fermentation product (Bio21B). The protein content of bread made under laboratory conditions was increased by using: (i) chickpea flour (CF) (15% wt/wt flour) and Bio21B or (ii) the Bio21B containing a fungal protease to favour the gluten hydrolysis. Products showed increased protein and total amino acid content and improved protein digestibility. Moreover, the formula significantly affected the protein pattern of breads which, according to the results of the microfluidic two-dimensional electrophoresis (µ2DE) protein pattern, were discriminated as observed by the PCA plot. The use of CF was validated at industrial pilot plant producing salt reduced sliced bread and puccia type bread. The resulting products showed improved nutritional profile and a sensory quality comparable to the company's products containing salt.


Assuntos
Pão/análise , Cicer , Fermentação , Farinha/análise , Lactobacillus plantarum/metabolismo , Cloreto de Sódio/metabolismo , Aminoácidos/análise , Digestão , Microbiologia de Alimentos , Glutens/análise , Glutens/metabolismo , Concentração de Íons de Hidrogênio , Proteínas/análise , Saccharomyces cerevisiae/metabolismo , Paladar , Triticum
2.
J Sci Food Agric ; 99(1): 199-209, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29851067

RESUMO

BACKGROUND: The quality of marinated ready-to-eat (RTE) swordfish fillets, with or without inoculation with the probiotic strain Lactobacillus paracasei IMPC 2.1, was assessed over 3 months of refrigerated storage at 4 °C. RTE probiotic and control fish fillets were sampled after 7, 14, 30, 60, and 90 days of storage. Microbiological tests were performed, and fatty acid (FA) profiles and malondialdehyde content were examined. Microbiological counts, including total viable count, lactic acid bacteria (LAB), yeasts, moulds, Enterobacteriaceae, and Pseudomonadaceae were determined. RESULTS: Inoculation successfully ensured the growth of the probiotic strain and prevented the growth of other LAB. The two RTE products showed significant differences in lipid profile and lipid oxidation during storage. In particular, inoculation with L. paracasei IMPC 2.1 increased the amount of polyunsaturated FAs and limited the amount of monounsaturated FAs and oleic acid, as well as lipid oxidation. It thus represents an interesting strategy for preserving the chemical quality of fish fillets and an alternative means of delivering probiotics. CONCLUSION: Probiotic inoculation with Lactobacillus paracasei seemed to delay lipid oxidation of the fish flesh and increase the retention of polyunsaturated FAs, suggesting a potential application for this strain in the seafood industry. © 2018 Society of Chemical Industry.


Assuntos
Fast Foods/microbiologia , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Peixes/microbiologia , Conservação de Alimentos/métodos , Lacticaseibacillus paracasei/fisiologia , Animais , Antibiose , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/fisiologia , Fast Foods/análise , Armazenamento de Alimentos , Fungos/crescimento & desenvolvimento , Fungos/fisiologia , Lacticaseibacillus paracasei/crescimento & desenvolvimento
3.
Front Microbiol ; 13: 907393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733952

RESUMO

Bacterial strains belonging to Lacticaseibacillus paracasei species are generally used as starters in food fermentations and/or as probiotics. In the current study, the growth cardinal parameters of four L. paracasei strains (IMPC2.1, IMPC4.1, P40 and P101), isolated from table olives or human source, were determined. Strains were grown in liquid medium and incubated at several temperatures (10 values from 5.5°C-40°C) and pH (15 values from 3.2 to 9.1) along the growth range. The cardinal temperature model was used to describe temperature effects on the maximum specific growth rate of L. paracasei whereas new equations were developed for the effect of pH. The estimated Tmin values ranged between -0.97°C and 1.95°C and were lower than 0°C for strains IMPC4.1 and P101. Strain P40 was able to grow in the most restricted range of temperature (from 1.95°C to 37.46°C), while strain IMPC4.1 was estimated to survive at extreme conditions showing the lowest pHmin . Maximum specific growth rates of L. paracasei IMPC2.1 in white cabbage (Brassica oleracea var. capitata) were used to calculate the correction factor (Cf ) defined as the bias between the bacterial maximum specific growth rate in broth and in the food matrix. A simple bi-linear model was also developed for the effect of temperature on the maximum population density reached in white cabbage. This information was further used to simulate the growth of L. paracasei strains in cabbage and predict the time to reach the targeted probiotic level (7 log10 CFU/g) using in silico simulations. This study demonstrates the potential of the predictive microbiology to predict the growth of beneficial and pro-technological strains in foods in order to optimize the fermentative process.

4.
Foods ; 10(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070312

RESUMO

Lactic acid bacteria (LAB) decisively influence the technological, nutritional, organoleptic and preservation properties of bakery products. Therefore, their use has long been considered an excellent strategy to improve the characteristics of those goods. The aim of this study was the evaluation of microbial diversity in different doughs used for the production of a typical Apulian flatbread, named focaccia. Leavening of the analyzed doughs was obtained with baker's yeast or by applying an innovative "yeast-free" protocol based on a liquid sourdough obtained by using Leuconostoc citreum strain C2.27 as a starter. The microbial populations of the doughs were studied by both a culture-dependent approach and metagenetic analyses. The flours used for dough preparation were also subjected to the same analyses. The metagenetic analyses were performed by sequencing the V5-V6 hypervariable regions of the 16S rRNA gene and the V9 hypervariable region of the 18S rRNA gene. The results indicate that these hypervariable regions were suitable for studying the microbiota of doughs, highlighting a significant difference between the microbial community of focaccia dough with baker's yeast and that of the dough inoculated with the bacterial starter. In particular, the dough made with baker's yeast contained a microbiota with a high abundance of Proteobacteria (82% of the bacterial population), known to be negatively correlated with the biochemical properties of the doughs, while the Proteobacteria in dough produced with the L. citreum starter were about 43.5% lower than those in flour and dough prepared using baker's yeast. Moreover, the results show that the L. citreum C2.27 starter was able to dominate the microbial environment and also reveal the absence of the genus Saccharomyces in the dough used for the production of the "yeast-free" focaccia. This result is particularly important because it highlights the suitability of the starter strain for obtaining an innovative "yeast-free" product.

5.
J Clin Gastroenterol ; 44 Suppl 1: S49-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20495470

RESUMO

GOALS: To determine whether the consumption of artichokes enriched with a probiotic Lactobacillus paracasei strain affects fecal microbiota composition, fecal enzyme activity, and short-chain fatty acids production and symptom profile in patients suffering from constipation. BACKGROUND: Constipation is a common gastrointestinal disorder often related to the food diet. The beneficial effects of probiotics and prebiotics on human health are under investigation. Moreover, recent studies assessed the suitability of some vegetables, particularly olives and artichokes, to vehicle probiotic strains into the gastrointestinal tract. STUDY: For 15 days, 8 volunteers (3M/5F age 40+/-14 y) integrated their normal diet with artichokes (180 gr) enriched with 20 billions of L. paracasei LMGP22043. Faecal samples were subjected to microbiologic and biochemical analyses. Besides, investigations on symptom profile of the volunteers and stool consistency were carried out by using a validated questionnaire (Gastrointestinal Symptom Rating Scale) and the Bristol stool form chart. RESULTS: The gut of all volunteers resulted to be colonized by the probiotic strain after 15 days feeding. No significant differences in the microbiological counts throughout the experimental period were registered, whereas a significant increase of butyric and valeric acids with a concomitant decrease of lactic acid was registered. At the same time, the fecal beta-glucuronidase activity was significantly reduced. Finally, the analysis of symptom profile indicated a marked reduction in abdominal distension and feeling of incomplete evacuation. CONCLUSIONS: These preliminary data suggest that novel approaches for treating constipation can come through ingestion of probiotic vegetable products that, acting as symbiotics, can ameliorate this common disorder.


Assuntos
Constipação Intestinal/terapia , Cynara scolymus/microbiologia , Microbiologia de Alimentos , Intestinos/microbiologia , Lactobacillus/crescimento & desenvolvimento , Probióticos , Adulto , Ácido Butírico/metabolismo , Constipação Intestinal/microbiologia , Constipação Intestinal/fisiopatologia , Fezes/microbiologia , Feminino , Glucuronidase/metabolismo , Humanos , Intestinos/fisiopatologia , Itália , Lactobacillus/metabolismo , Masculino , Metagenoma , Pessoa de Meia-Idade , Ácidos Pentanoicos/metabolismo , Projetos Piloto , Inquéritos e Questionários , Fatores de Tempo , Resultado do Tratamento
6.
Antonie Van Leeuwenhoek ; 98(4): 505-17, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20563849

RESUMO

The main aim of this work was the identification of genetic determinants involved in bacteriocin production by strain ITM317 of Pseudomonas savastanoi pv. savastanoi, besides bacteriocin characterization. The bacteriocin was observed to be a heat-sensitive, high molecular weight proteinaceous compound. We identified a transposon (Tn5)-induced mutant which had lost its ability to produce the bacteriocin. The Tn5 insertion's responsibility for the above mutated phenotype was demonstrated by marker-exchange mutagenesis. An EcoRI DNA fragment, corresponding to the EcoRI Tn5-containing fragment of the mutant, was also cloned from the wild-type strain, and its introduction into the mutant complemented the mutation. Moreover, that fragment enabled bacteriocin production by P. s. pv. savastanoi ITM302, a strain not previously capable of doing so. DNA sequence analysis revealed that Tn5 insertion occurred in the mutant within a large ORF encoding a protein which showed similarity with proteins from the Rhs family. The DNA region including that ORF showed features which have been considered typical of the Rhs genetic elements previously identified in other bacteria but whose function is as yet unclear. The results of this study for the first time identify an Rhs-like element in P. s. pv. savastanoi, and for the first time indicate that an Rhs element is involved in bacteriocin production, also suggesting this possible function for Rhs genetic elements previously characterized in other bacteria.


Assuntos
Bacteriocinas/biossíntese , Elementos de DNA Transponíveis , DNA Bacteriano/isolamento & purificação , Pseudomonas/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/genética , Bacteriocinas/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Desoxirribonuclease EcoRI/metabolismo , Genes Bacterianos , Dados de Sequência Molecular , Mutagênese Insercional , Fases de Leitura Aberta , Doenças das Plantas/microbiologia , Plasmídeos/genética , Pseudomonas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína
7.
Front Microbiol ; 11: 967, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508785

RESUMO

Exopolysaccharides (EPSs) are known for their positive contribute to the technological properties of many foods, including bakery products. These molecules can be obtained performing piloted fermentation with lactic acid bacteria (LAB). In order to select strains able to produce EPS, a screening test in agar medium containing sucrose, fructose or glucose as carbohydrate source was performed on 21 LAB strains. Results allowed to select 8 Weissella cibaria, 2 Weissella confusa, and 2 Leuconostoc spp. strains as EPS producers only in the presence of sucrose. A further screening in liquid medium enriched with sucrose (10%) (mMRS_S) indicated the W. cibaria strain C43-11 as the higher EPS producer. The selected strain was used to develop liquid sourdoughs (LSs) with dough yield (DY) 500, fermented for 15 h and based on wheat flour and wheat gluten or pseudocereals (quinoa or amaranth) in ratio 1:1, in the presence or not of sucrose at 3% (w/w, LS weight), in comparison to Lactobacillus plantarum ITM21B, a strain not producing EPS in mMRS_S. Results indicated that the use of pseudocereals favored the EPS production. Formulations were optimized by modifying DY (500 or 250), sucrose concentration (3 or 6%) and flour ratio. LSs were characterized for the content of organic acids (lactic, acetic, phenyllactic, OH-phenyllactic), pH, TTA, EPS, viscosity, total protein degradation and protein pattern. The highest EPS production (20.79 g/kg) and viscosity (1168 mPa s) were obtained in LS (DY 250, sucrose 6%) based on quinoa flour and started with C43-11 strain. The LS was characterized by the presence of phenyllactic and OH-phenyllactic acids, protein degradation by 51.7% and proteins in the range 14-80 kDa. In these conditions, also strain ITM21B was able to produce EPS at level of 4.61 g/kg and to degrade proteins by 53.8% in LS based on wheat and quinoa flours (1:1) (DY250 and sucrose 3%). Therefore, results demonstrated that the use of selected conditions (flour type, DY, sucrose) can stimulate specific attributes of strains making them suitable for production of short fermented (15 h) LSs which can be used as bread improvers.

8.
J Food Sci ; 85(2): 465-476, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31957899

RESUMO

The aim of the current study was to identify quality indicators of fat (14.50 ± 0.75%) and low-fat (4.79 ± 0.63%) raw ground beef by monitoring changes in physicochemical and microbiological parameters during aerobic refrigerated storage, such as water-holding capacity, pH, thiols, carbonyl compounds, thiobarbituric acid reactive substances (TBARS), metmyoglobin, deoxymyoglobin, oxymyoglobin color indices, pseudomonads, Brochothrix thermosphacta, and total viable counts. Meat packaged in air-permeable polyethylene plastic film was stored under controlled isothermal conditions (0, 5, 10, and 15 °C). A population level of pseudomonads equal to 7.0 ± 0.5 log10 colony forming units (CFU)/g was considered as the potential spoilage level. Using principal component analysis, samples were distinguished on the basis of their microbial load. A significant positive correlation between microbial population and carbonyls, metmyoglobin, TBARS, water-holding capacity, and a negative correlation with thiols and color parameters (L* , chroma) were observed. Two different approaches were followed to estimate the quality status of samples: (i) the partial least square (PLS) regression with R2 of 0.93 and root mean square error prediction of 0.44 for pseudomonads, using the above physicochemical characteristics as the dominant input variables, which allowed prediction of the microbiological status of ground beef regardless of time-temperature storage profile and fat content, and (ii) a square-root-type model (adjusted R2 of 0.952) that satisfactorily predicted the growth of spoilage pseudomonads under isothermal and dynamic conditions, regardless of the above physicochemical changes. The above results suggest that depending on the available input data, the two modeling approaches can accurately (and complementarily) assess quality of aerobically stored ground beef. PRACTICAL APPLICATION: Changes in appearance and quality of fat and low-fat raw ground beef are associated with physicochemical alteration and/or microbial growth. The study provides two different modeling approaches that can be integrated in an intelligent interface of the refrigerator having specific colorimetric and/or temperature sensors, to evaluate in a convenience way the quality of stored meat thus reducing domestic waste: the partial least square model was based on physicochemical parameters (particularly chroma, metmyoglobin, and thiobarbituric acid reactive substances), while the square root model was based on the time-temperature conditions during storage.


Assuntos
Bactérias/isolamento & purificação , Gorduras/análise , Carne/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bovinos , Contagem de Colônia Microbiana , Cor , Microbiologia de Alimentos , Armazenamento de Alimentos , Refrigeração , Temperatura , Substâncias Reativas com Ácido Tiobarbitúrico/análise
9.
Carbohydr Polym ; 230: 115627, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887941

RESUMO

In this study, chitosan (C) tripolyphosphate (T) sub-micro particles containing ungeremine (CTUn), an alkaloid particularly active against Penicilliumroqueforti, a fungus responsible of the bakery products deterioration, were prepared through external gelation crosslinking process. The particles were included in a thermoplastic starch based polymer Mater-Bi (MBi), and MBi/CTUn bioactive biocomposites were obtained. The films showed bioactivity against P. roqueforti. In particular, the bioassays were performed on films with different concentration of CTUn and at different pH values. CTUn particles influenced MBi crystallization (DSC analysis) and promoted thermal degradation of MBi starch component (TGA). Morphological analysis confirmed even distribution of sub-micro particles into the polymeric matrix. Water permeability slightly increased, as expected, whereas oxygen permeability decreased. Tensile tests showed CTUN sub-microparticles improved rigidity and tensile strength of the films at the expense of ductility. Finally, MBi/CTUn biocomposites evidenced interesting performances potentially exploitablein bioactive bakery based food packaging materials.


Assuntos
Antifúngicos/química , Quitosana/análogos & derivados , Amido/análogos & derivados , Antifúngicos/farmacologia , Embalagem de Alimentos/métodos , Nanocompostos/química , Oxigênio/química , Penicillium/efeitos dos fármacos , Resistência à Tração
10.
Cytokine ; 48(3): 254-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19736022

RESUMO

Probiotic strains play an important role in modulating activities in the gut-associated lymphoid tissue. Elucidation of the mechanisms that mediate probiotic-driven immunomodulation may facilitate their therapeutic application for specific immune-mediated diseases or for prophylaxis. In this study, we explored the effect of different Lactobacillus spp. and Bifidobacterium lactis in transgenic mice expressing the human DQ8 heterodimer, a HLA molecule linked to Celiac Disease (CD). In vitro analysis on immature bone marrow-derived dendritic cells (iBMDCs) showed that all strains up-regulated surface B7-2 (CD86), indicative of DC maturation, however, with different intensity. No strain induced appreciable levels of IL-10 or IL-12 in iBMDCs, whereas TNF-alpha expression was essentially elicited by Lactobacillus paracasei and Lactobacillus fermentum. Interestingly, these strains were found also to increase the antigen-specific TNF-alpha secretion in vivo, following co-administration of probiotic bacteria in mice mucosally immunized with the gluten component gliadin. Together these findings highlighted the ability of probiotics to exert strain-specific inductive rather than suppressive effects both on the innate and adaptive immunity in a mouse model of food antigen sensitivity.


Assuntos
Imunidade Adaptativa , Doença Celíaca/imunologia , Doença Celíaca/terapia , Imunidade Inata , Probióticos , Animais , Doença Celíaca/genética , Citocinas/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Gliadina/imunologia , Antígenos HLA-DQ/genética , Humanos , Camundongos , Camundongos Transgênicos
11.
Foods ; 8(2)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781845

RESUMO

The aim of this study was the characterization and selection of bacterial strains suitable for the production of a "yeast-free" bread. The strains Leuconostoc citreum C2.27 and Weissella confusa C5.7 were selected for their leavening and acidification capabilities and individually used as starters in bread-making tests. Liquid type-II sourdoughs, singly inoculated with the two selected strains, were characterized and employed for bread-making, through the set-up of a biotechnological protocol without the use of baker's yeast as a leavening agent. Aiming to verify the ability of the selected strains to dominate the fermentation process, bacteria and yeasts were isolated from liquid sourdoughs and doughs, genetically characterized and identified. Both the selected strains were suitable for the production of bread, even if L. citreum C2.27 showed the highest leavening capacity and was able to dominate the dough microbiota. The effects of different salt concentrations on the selected strain performances were also investigated. The applicability of the developed protocol, adapted for the production of the typical Apulian bread, "puccia", and the suitability of the strain L. citreum C2.27 were confirmed at pilot scale in an industrial bakery. The puccia bread, which was produced with the liquid sourdough fermented with L. citreum C2.27, without baker's yeast and salt, was similar in appearance to the conventional product containing baker's yeast and was judged positively by a sensory analysis.

12.
Int J Food Microbiol ; 122(3): 328-32, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18261817

RESUMO

Four fermentation products (FPs) of the lactic acid bacterium Lactobacillus plantarum ITM21B were screened for their anti-Bacillus activity in vitro and in bread-making trials. Results of the storage tests performed with loaves prepared with an FP or calcium propionate demonstrated that after 3 days at 30 degrees C, gross spoilage was evident in only the control loaves, which contained Bacillus subtilis at numbers of about 10(9) cfu/g. The highest inhibitory activity was shown by DM-FP obtained by growing L. plantarum in a defined medium (DM). Significantly, this medium contained an amino acceptor of the aminoacid transamination, namely alpha-ketoglutaric acid, and an aminoacid pool. With loaves prepared using the DM-acid mixture which simulated the DM-FP composition, the same reduction of ropy spoilage as with DM-FP was obtained after 3 days, while the efficacy of the mixture decreased after 7 days. This result suggests the potential involvement of some unknown metabolites in the inhibitory activity of DM-FP. In baked products made with flour based media (M1-FP, M2-FP, M3-FP), no ropy symptoms were noticeable after 3 days storage although a considerable Bacillus count was detected. DM-FP was as effective as calcium propionate (0.3% w/w, based on flour mass) in prolonging the Bacillus free-shelf life of yeast-leavened bread for 7 days.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Pão/microbiologia , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/métodos , Lactobacillus plantarum/fisiologia , Antibiose , Contagem de Colônia Microbiana , Meios de Cultura/química , Fermentação , Manipulação de Alimentos/métodos , Lactobacillus plantarum/metabolismo , Propionatos/farmacologia , Temperatura , Fatores de Tempo
13.
Nat Prod Res ; 32(13): 1605-1610, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29027475

RESUMO

Moulds food infestation is a heavy dangerous problem for human health and also could generate heavy economic losses. The intelligent packaging using eco-friendly biodegradable biofilm incorporating bioactive natural safe compounds represents a new frontier. This manuscript reports the inhibitory activity of 12 bacterial, fungal and plant metabolites against Penicillium roqueforti and Aspergillus niger. Among them α-costic acid and ungeremine (3 and 12) are the most promising as potential biofungicide against both fungal strains. They inhibited fungal growth by more than 60% respect to the control at 72 h and this activity persisted also at 96 h. Ungeremine showed MIC90 lower than 0.003 mg/mL after 48 h of incubation and of 0.025 mg/mL at 72 h against P. roqueforti. The MIC90 value for A. niger was 0.2 mg/mL at 48 h for both compounds. The α-costic acid showed generally MIC values at 48 and 72 h higher than ungeremine.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Embalagem de Alimentos/métodos , Penicillium/efeitos dos fármacos , Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fungos/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Plantas/metabolismo
14.
Front Microbiol ; 9: 889, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867802

RESUMO

This paper proposes bio-preservation as a tool to assure quality and safety of Spanish-style table olives cv. Bella di Cerignola. Lactobacillus plantarum 5BG was inoculated in ready to sell olives packaged in an industrial plant by using a half-volume brine (4% NaCl; 2% sucrose). The samples were stored at 4°C. The survival of the inoculated strain, the microbiological quality, the sensory scores and the survival of a strain of Listeria monocytogenes inoculated in brines were evaluated. The persistence of the Lb. plantarum bio-preserving culture was confirmed on olives (≥6.5 Log CFU/g) and in brine (≥7 Log CFU/ml). Bio-preserved olives (SET1) showed a better sensory profile than chemically acidified control olives (SET2) and the texture was the real discriminative parameter among samples. Bio-preserved olives recorded better scores during storage because of their ability to retain good hardness, crunchiness, and fibrousness without cracks. The inoculation of Lb. plantarum positively acted on the safety of olives, as the D-value of L. monocytogenes was reduced from 40 (SET2) to 5 days (SET1). In conclusion, Lb. plantarum 5BG and the physico-chemical conditions achieved in the settled procedure are suitable for the industrial packaging of Bella di Cerignola table olives, improving the process by halving brining volumes and avoiding chemical stabilizers, and significantly reducing the salt concentration. The final product is also safely preserved for almost 5 months as suggested by the reduction of the survival rate of L. monocytogenes.

15.
Carbohydr Polym ; 195: 631-641, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29805021

RESUMO

In this study, chitosan based microbeads containing Ungeremine, an antimicrobial alkaloid particularly active against Penicillium roqueforti, a filamentous fungus responsible of the bakery products deterioration, were prepared by external gelation by using sodium tripolyphosphate (TPP) as crosslinking agent. The stability of the beads, as well as the loading efficiency of the bioactive molecule, were assessed at different pH and TPP concentrations resulting particularly enhanced at low pH. All the microbeads evidenced antimicrobial activity against Penicillium roqueforti. The release kinetics of Ungeremine was tailored by opportunely modulating pH and TPP concentrations. Morphological analysis evidenced the improvement of the structural crosslinking density of microbeads including Ungeremine and spectroscopic analysis emphasized the active participation of Ungeremine to the crosslinking process occurring between chitosan and TPP. Finally, thermogravimetric analysis confirmed the increasing of free volume in three-dimensional networks and their liability to thermal degradation.

16.
Food Chem ; 258: 104-110, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29655710

RESUMO

In this paper, a novel and sustainable process for the fruit dehydration was described. Specifically, edible coatings based on pectin and honey were prepared and used as dehydrating and antimicrobial agents of cut fruit samples, in this way promoting the fruit preservation from irreversible deteriorative processes. Pectin-honey coating was tested on apple, cantaloupe melon, mango and pineapple. The analysis were performed also on uncoated dehydrated fruits (control). The coated fruit evidenced enhanced dehydration percentage, enriched polyphenol and vitamin C contents, improved antioxidant activity and volatile molecules profile. Moreover, the antimicrobial activity against Pseudomonas and Escherichia coli was assessed. Finally, morphological analysis performed on fruit fractured surface, highlighted the formation of a non-sticky and homogeneous thin layer. These outcomes suggested that the novel fruit dehydration process, performed by using pectin-honey coating, was able to both preserve the safety and quality of dehydrated fruits, and enhance their authenticity and naturalness.


Assuntos
Conservantes de Alimentos/química , Frutas/química , Mel/análise , Pectinas/química , Ácido Ascórbico/química , Escherichia coli/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Malus/química , Malus/microbiologia , Mangifera/química , Mangifera/microbiologia , Polifenóis/química , Pseudomonas/efeitos dos fármacos
17.
Food Chem ; 221: 582-589, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979245

RESUMO

A Lactobacillus plantarum fermentation product (Bio21B), obtained after strain growth (14h) in a wheat flour-based medium, was applied in the bread-making process as taste enhancer, in order to obtain a yeast-leavened bread with reduced salt content (20% and 50%) with respect to a reference bread (REF) not containing the fermentation product. Sensory analysis indicated that the Bio21B bread with salt reduced by 50% had a pleasant taste similar to the salt-containing bread (REF). l-Glutamate and total free amino acid content did not differ between REF and Bio21B breads, while the acids lactic, acetic, phenyllactic, 4-OH-phenyllactic and indole-3-lactic were present only in Bio21B breads. Moreover, the presence of several umami (uridine monophosphate, inosine monophosphate, adenosine, and guanosine) and kokumi (γ-l-glutamyl-l-valine) taste-related molecules was ascertained both in REF and in Bio21B breads. Therefore, a possible role of the acidic molecules in compensating the negative perception of salt reduction can be hypothesized.


Assuntos
Pão/análise , Lactobacillus plantarum/química , Fermentação , Fermento Seco
19.
Int J Food Microbiol ; 222: 1-7, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-26827290

RESUMO

The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB strains and resulted in the production of the polyporic acid, here ascertained in LAB strains.


Assuntos
Antibiose/fisiologia , Aspergillus niger/fisiologia , Microbiologia de Alimentos , Lactobacillaceae/fisiologia , Penicillium/fisiologia , Ácidos Fenilpirúvicos/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Pão/microbiologia , Meios de Cultura/química , Meios de Cultura/normas , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Lactobacillaceae/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Penicillium/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
20.
Nutrients ; 8(10)2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27754398

RESUMO

The most recent trend in research on probiotic bacteria aims at the exploitation of bioactive bacterial compounds that are responsible for health-promoting effects and suitable for medical applications. Therefore, the main purpose of this study was to ascertain if the immunomodulatory effects of L. paracasei strains on dendritic cells (DCs) were caused by bacterial metabolites released in the culture medium. For that reason, bacterial strains were grown in two media generally used for the culture of DCs, and the effects of culture filtrates on the maturation of DCs and cytokine production were evaluated. Moreover, to reveal potential synergistic effects on the immunomodulation of DCs, an artichoke phenolic extract (APE) was added to the media before bacterial growth. The experiments pointed out an interesting anti-inflammatory activity of a culture filtrate obtained after growing a probiotic L. paracasei strain in one of the media supplemented with APE. Therefore, this culture filtrate-which combines the anti-inflammatory activity and the other well-known health-promoting properties of artichoke phenolic compounds-could represent the basis for future particular exploitations.


Assuntos
Cynara scolymus/química , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Lacticaseibacillus paracasei/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Probióticos , Células Dendríticas/metabolismo , Humanos , Lacticaseibacillus paracasei/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA