Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 120: 104480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431326

RESUMO

Biofilms are central to microbial life because of the advantage that this mode of life provides, whereas the planktonic form is considered to be transient in the environment. During the winemaking process, grape must and wines host a wide diversity of microorganisms able to grow in biofilm. This is the case of Brettanomyces bruxellensis considered the most harmful spoilage yeast, due to its negative sensory effect on wine and its ability to colonise stressful environments. In this study, the effect of different biotic and abiotic factors on the bioadhesion and biofilm formation capacities of B. bruxellensis was analyzed. Ethanol concentration and pH had negligible effect on yeast surface properties, pseudohyphal cell formation or bioadhesion, while the strain and genetic group factors strongly modulated the phenotypes studied. From a biotic point of view, the presence of two different strains of B. bruxellensis did not lead to a synergistic effect. A competition between the strains was rather observed during biofilm formation which seemed to be driven by the strain with the highest bioadhesion capacity. Finally, the presence of wine bacteria reduced the bioadhesion of B. bruxellensis. Due to biofilm formation, O. oeni cells were observed attached to B. bruxellensis as well as extracellular matrix on the surface of the cells.


Assuntos
Brettanomyces , Vinho , Saccharomyces cerevisiae , Microbiologia de Alimentos , Brettanomyces/metabolismo , Vinho/microbiologia
2.
Food Microbiol ; 112: 104217, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906300

RESUMO

Brettanomyces bruxellensis is the most damaging spoilage yeast in the wine industry because of its negative impact on the wine organoleptic qualities. The strain persistence in cellars over several years associated with recurrent wine contamination suggest specific properties to persist and survive in the environment through bioadhesion phenomena. In this work, the physico-chemical surface properties, morphology and ability to adhere to stainless steel were studied both on synthetic medium and on wine. More than 50 strains representative of the genetic diversity of the species were considered. Microscopy techniques made it possible to highlight a high morphological diversity of the cells with the presence of pseudohyphae forms for some genetic groups. Analysis of the physico-chemical properties of the cell surface reveals contrasting behaviors: most of the strains display a negative surface charge and hydrophilic behavior while the Beer 1 genetic group has a hydrophobic behavior. All strains showed bioadhesion abilities on stainless steel after only 3 h with differences in the concentration of bioadhered cells ranging from 2.2 × 102 cell/cm2 to 7.6 × 106 cell/cm2. Finally, our results show high variability of the bioadhesion properties, the first step in the biofilm formation, according to the genetic group with the most marked bioadhesion capacity for the beer group.


Assuntos
Brettanomyces , Vinho , Microbiologia de Alimentos , Aço Inoxidável/análise , Brettanomyces/metabolismo , Vinho/análise , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA