Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 459(7247): 678-82, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19494910

RESUMO

Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes ( approximately 40 degrees ) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude approximately 40 degrees N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titan's equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected.

2.
J Geophys Res Planets ; 127(9): e2021JE007093, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36246083

RESUMO

Between January 2019 and January 2021, the Mars Science Laboratory team explored the Glen Torridon (GT) region in Gale crater (Mars), known for its orbital detection of clay minerals. Mastcam, Mars Hand Lens Imager, and ChemCam data are used in an integrated sedimentological and geochemical study to characterize the Jura member of the upper Murray formation and the Knockfarril Hill member of the overlying Carolyn Shoemaker formation in northern GT. The studied strata show a progressive transition represented by interfingering beds of fine-grained, recessive mudstones of the Jura member and coarser-grained, cross-stratified sandstones attributed to the Knockfarril Hill member. Whereas the former are interpreted as lacustrine deposits, the latter are interpreted as predominantly fluvial deposits. The geochemical composition seen by the ChemCam instrument show K2O-rich mudstones (∼1-2 wt.%) versus MgO-rich sandstones (>6 wt.%), relative to the average composition of the underlying Murray formation. We document consistent sedimentary and geochemical data sets showing that low-energy mudstones of the Jura member are associated with the K-rich endmember, and that high-energy cross-stratified sandstones of the Knockfarril Hill member are associated with the Mg-rich endmember, regardless of stratigraphic position. The Jura to Knockfarril Hill transition therefore marks a significant paleoenvironmental change, where a long-lived and comparatively quiescent lacustrine setting progressively changes into a more energetic fluvial setting, as a consequence of shoreline regression due to either increased sediment supply or lake-level drop.

3.
Sensors (Basel) ; 9(1): 616-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22389620

RESUMO

Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured.

4.
Science ; 364(6445)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31196983

RESUMO

Saturn's rings are an accessible exemplar of an astrophysical disk, tracing the Saturn system's dynamical processes and history. We present close-range remote-sensing observations of the main rings from the Cassini spacecraft. We find detailed sculpting of the rings by embedded masses, and banded texture belts throughout the rings. Saturn-orbiting streams of material impact the F ring. There are fine-scaled correlations among optical depth, spectral properties, and temperature in the B ring, but anticorrelations within strong density waves in the A ring. There is no spectral distinction between plateaux and the rest of the C ring, whereas the region outward of the Keeler gap is spectrally distinct from nearby regions. These results likely indicate that radial stratification of particle physical properties, rather than compositional differences, is responsible for producing these ring structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA