RESUMO
Sugar beet is susceptible to Beet curly top virus (BCTV), which significantly reduces yield and sugar production in the semi-arid growing regions worldwide. Sources of genetic resistance to BCTV is limited and control depends upon insecticide seed treatments with neonicotinoids. Through double haploid production and genetic selection, BCTV resistant breeding lines have been developed. Using BCTV resistant (R) [KDH13; Line 13 and KDH4-9; Line 4] and susceptible (S) [KDH19-17; Line 19] lines, beet leafhopper mediated natural infection, mRNA/sRNA sequencing, and metabolite analyses, potential mechanisms of resistance against the virus and vector were identified. At early infection stages (2- and 6-days post inoculation), examples of differentially expressed genes highly up-regulated in the 'R' lines (vs. 'S') included EL10Ac5g10437 (inhibitor of trypsin and hageman factor), EL10Ac6g14635 (jasmonate-induced protein), EL10Ac3g06016 (ribosome related), EL10Ac2g02812 (probable prolyl 4-hydroxylase 10), etc. Pathway enrichment analysis showed differentially expressed genes were predominantly involved with peroxisome, amino acids metabolism, fatty acid degradation, amino/nucleotide sugar metabolism, etc. Metabolite analysis revealed significantly higher amounts of specific isoflavonoid O-glycosides, flavonoid 8-C glycosides, triterpenoid, and iridoid-O-glycosides in the leaves of the 'R' lines (vs. 'S'). These data suggest that a combination of transcriptional regulation and production of putative antiviral metabolites might contribute to BCTV resistance. In addition, genome divergence among BCTV strains differentially affects the production of small non-coding RNAs (sncRNAs) and small peptides which may potentially affect pathogenicity and disease symptom development.
Assuntos
Beta vulgaris , Geminiviridae , Beta vulgaris/genética , Haploidia , Melhoramento Vegetal , Verduras , Genótipo , Açúcares , GlicosídeosRESUMO
Fungal pigments, which are classified as secondary metabolites, are polymerized products derived mostly from phenolic precursors with remarkable structural diversity. Pigments of conidia and sclerotia serve myriad functions. They provide tolerance against various environmental stresses such as ultraviolet light, oxidizing agents, and ionizing radiation. Some pigments even play a role in fungal pathogenesis. This review gathers available research and discusses current knowledge on the formation of conidial and sclerotial pigments in aspergilli. It examines organization of genes involved in pigment production, biosynthetic pathways, and biological functions and reevaluates some of the current dogma, especially with respect to the DHN-melanin pathway, on the production of these enigmatic polymers. A better understanding of the structure and biosynthesis of melanins and other pigments could facilitate strategies to mitigate fungal pathogenesis.
Assuntos
Aspergillus/metabolismo , Vias Biossintéticas , Pigmentos Biológicos/biossíntese , Esporos Fúngicos/metabolismo , Melaninas/biossíntese , Metabolismo SecundárioRESUMO
Filamentous fungi represent a rich source of extrolites, including secondary metabolites (SMs) comprising a great variety of astonishing structures and interesting bioactivities. State-of-the-art techniques in genome mining, genetic manipulation, and secondary metabolomics have enabled the scientific community to better elucidate and more deeply appreciate the genetic and biosynthetic chemical arsenal of these microorganisms. Aspergillus flavus is best known as a contaminant of food and feed commodities and a producer of the carcinogenic family of SMs, aflatoxins. This fungus produces many SMs including polyketides, ribosomal and nonribosomal peptides, terpenoids, and other hybrid molecules. This review will discuss the chemical diversity, biosynthetic pathways, and biological/ecological role of A. flavus SMs, as well as their significance concerning food safety and security.
Assuntos
Aspergillus flavus/química , Aspergillus flavus/metabolismo , Metaboloma , Aflatoxinas/biossíntese , Aspergillus flavus/genética , Vias Biossintéticas , Inocuidade dos Alimentos , Proteínas Fúngicas/biossíntese , Genes Fúngicos , Policetídeos/metabolismoRESUMO
Aspergillus flavus can colonize important food staples and produce aflatoxins, a group of toxic and carcinogenic secondary metabolites. Previous in silico analysis of the A. flavus genome revealed 56 gene clusters predicted to be involved in the biosynthesis of secondary metabolites. A. flavus secondary metabolites produced during infection of maize seed are of particular interest, especially with respect to their roles in the biology of the fungus. A predicted nonribosomal peptide synthetase-like (NRPS-like) gene, designated asaC (AFLA_023020), present in the uncharacterized A. flavus secondary metabolite gene cluster 11 was previously shown to be expressed during the earliest stages of maize kernel infection. Cluster 11 is composed of six additional genes encoding a number of putative decorating enzymes as well as a transporter and transcription factor. We generated knock-out mutants of the seven predicted cluster 11 genes. LC-MS analysis of extracts from knockout mutants of these genes showed that they were responsible for the synthesis of the previously characterized antimicrobial mycotoxin aspergillic acid. Extracts of the asaC mutant showed no production of aspergillic acid or its precursors. Knockout of the cluster 11 P450 oxidoreductase afforded a pyrazinone metabolite, the aspergillic acid precursor deoxyaspergillic acid. The formation of hydroxyaspergillic acid was abolished in a desaturase/hydroxylase mutant. The hydroxamic acid functional group in aspergillic acid allows the molecule to bind to iron resulting in the production of a red pigment in A. flavus identified previously as ferriaspergillin. A reduction of aflatoxin B1 and cyclopiazonic acid that correlated with reduced fungal growth was observed in maize kernel infection assays when aspergillic acid biosynthesis in A. flavus is halted.
Assuntos
Aspergillus flavus/genética , Genes Fúngicos , Família Multigênica , Aspergillus flavus/metabolismo , Técnicas de Silenciamento de Genes , Pirazinas/metabolismoRESUMO
MAIN CONCLUSION: Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin. The pre-harvest control of A. flavus contamination and aflatoxin production is an area of intense research, which includes breeding strategies, biological control, and the use of genetically-modified crops. Host-induced gene silencing, whereby the host crop produces siRNA molecules targeting crucial genes in the invading fungus and targeting the gene for degradation, has shown to be promising in its ability to inhibit fungal growth and decrease aflatoxin contamination. Here, we demonstrate that maize inbred B104 expressing an RNAi construct targeting the A. flavus alpha-amylase gene amy1 effectively reduces amy1 gene expression resulting in decreased fungal colonization and aflatoxin accumulation in kernels. This work contributes to the development of a promising technology for reducing the negative economic and health impacts of A. flavus growth and aflatoxin contamination in food and feed crops.
Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/enzimologia , Doenças das Plantas/microbiologia , Zea mays/microbiologia , alfa-Amilases/genética , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/fisiologia , Produtos Agrícolas , Proteínas Fúngicas/genética , Inativação Gênica , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Interferência de RNA , Sementes/microbiologiaRESUMO
The ongoing search for effective antiplasmodial agents remains essential in the fight against malaria worldwide. Emerging parasitic drug resistance places an urgent need to explore chemotherapies with novel structures and mechanisms of action. Natural products have historically provided effective antimalarial drug scaffolds. In an effort to search nature's chemical potential for antiplasmodial agents, unconventionally sourced organisms coupled with innovative cultivation techniques were utilized. Approximately 60,000 niche microbes from various habitats (slow-growing terrestrial fungi, Antarctic microbes, and mangrove endophytes) were cultivated on a small-scale, extracted, and used in high-throughput screening to determine antimalarial activity. About 1% of crude extracts were considered active and 6% partially active (≥ 67% inhibition at 5 and 50 µg/mL, respectively). Active extracts (685) were cultivated on a large-scale, fractionated, and screened for both antimalarial activity and cytotoxicity. High interest fractions (397) with an IC50 < 1.11 µg/mL were identified and subjected to chromatographic separation for compound characterization and dereplication. Identifying active compounds with nanomolar antimalarial activity coupled with a selectivity index tenfold higher was accomplished with two of the 52 compounds isolated. This microscale, high-throughput screening project for antiplasmodial agents is discussed in the context of current natural product drug discovery efforts.
Assuntos
Antimaláricos/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Técnicas Bacteriológicas/métodos , Fungos/crescimento & desenvolvimento , Microbiota , Micologia/métodos , Animais , Bioensaio , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromatografia , Cães , Descoberta de Drogas , Resistência a Medicamentos , Humanos , Concentração Inibidora 50 , Invertebrados/microbiologia , Células Madin Darby de Rim Canino , Espectroscopia de Ressonância Magnética , Malária/tratamento farmacológico , Miniaturização , Extratos Vegetais/química , Plasmodium falciparum/efeitos dos fármacos , Células VeroRESUMO
In Escherichia coli , the bifunctional penicillin-binding proteins (PBPs), PBP1A and PBP1B, play critical roles in the final stage of peptidoglycan (PG) biosynthesis. These synthetic enzymes each possess a PG glycosyltransferase (PGT) domain and a transpeptidase (TP) domain. Recent genetic experiments have shown that PBP1A and PBP1B each require an outer membrane lipoprotein, LpoA and LpoB, respectively, to function properly in vivo. Here, we use complementary assays to show that LpoA and LpoB each increase the PGT and TP activities of their cognate PBPs, albeit by different mechanisms. LpoA directly increases the rate of the PBP1A TP reaction, which also results in enhanced PGT activity; in contrast, LpoB directly affects PGT domain activity, resulting in enhanced TP activity. These studies demonstrate bidirectional coupling of PGT and TP domain function. Additionally, the transpeptidation assay described here can be applied to study other activators or inhibitors of the TP domain of PBPs, which are validated drug targets.
Assuntos
Escherichia coli/enzimologia , Lipoproteínas/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Coenzimas/metabolismo , Modelos Biológicos , Estrutura Molecular , Proteínas de Ligação às Penicilinas/químicaRESUMO
Penicillin-binding proteins (PBPs) are involved in the synthesis and remodeling of bacterial peptidoglycan (PG). Staphylococcus aureus expresses four PBPs. Genetic studies in S. aureus have implicated PBP4 in the formation of highly cross-linked PG, but biochemical studies have not reached a consensus on its primary enzymatic activity. Using synthetic Lipid II, we show here that PBP4 preferentially acts as a transpeptidase (TP) in vitro. Moreover, it is the PBP primarily responsible for incorporating exogenous d-amino acids into cellular PG, implying that it also has TP activity in vivo. Notably, PBP4 efficiently exchanges d-amino acids not only into PG polymers but also into the PG monomers Lipid I and Lipid II. This is the first demonstration that any TP domain of a PBP can activate the PG monomer building blocks. Exploiting the promiscuous TP activity of PBP4, we developed a simple, highly sensitive assay to detect cellular pools of lipid-linked PG precursors, which are of notoriously low abundance. This method, which addresses a longstanding problem, is useful for assessing how genetic and pharmacological perturbations affect precursor levels, and may facilitate studies to elucidate antibiotic mechanism of action.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo , Staphylococcus aureus , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Proteínas de Bactérias/química , Monossacarídeos , Oligopeptídeos , Proteínas de Ligação às Penicilinas/química , Estrutura Terciária de ProteínaRESUMO
The peptidoglycan precursor, Lipid II, produced in the model Gram-positive bacterium Bacillus subtilis differs from Lipid II found in Gram-negative bacteria such as Escherichia coli by a single amidation on the peptide side chain. How this difference affects the cross-linking activity of penicillin-binding proteins (PBPs) that assemble peptidoglycan in cells has not been investigated because B. subtilis Lipid II was not previously available. Here we report the synthesis of B. subtilis Lipid II and its use by purified B. subtilis PBP1 and E. coli PBP1A. While enzymes from both organisms assembled B. subtilis Lipid II into glycan strands, only the B. subtilis enzyme cross-linked the strands. Furthermore, B. subtilis PBP1 catalyzed the exchange of both D-amino acids and D-amino carboxamides into nascent peptidoglycan, but the E. coli enzyme only exchanged D-amino acids. We exploited these observations to design a fluorescent D-amino carboxamide probe to label B. subtilis PG in vivo and found that this probe labels the cell wall dramatically better than existing reagents.
Assuntos
Parede Celular/metabolismo , Corantes Fluorescentes/metabolismo , Peptidoglicano/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/enzimologia , Escherichia coli/enzimologia , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismoRESUMO
Aspergillus flavus, a fungus known for producing aflatoxins, poses significant threats to agriculture and global health. Flavonoids, plant-derived compounds, inhibit A. flavus proliferation and mitigate aflatoxin production, although the precise molecular and physical mechanisms underlying these effects remain poorly understood. In this study, we investigated three flavonoids-apigenin, luteolin, and quercetin-applied to A. flavus NRRL 3357. We determined the following: (1) glycosylated luteolin led to a 10% reduction in maximum fungal growth capacity; (2) quercetin affected cell wall integrity by triggering extreme mycelial collapse, while apigenin and luteolin caused peeling of the outer layer of cell wall; (3) luteolin exhibited the highest antioxidant capacity in the environment compared to apigenin and quercetin; (4) osmotic stress assays did not reveal morphological defects; (5) flavonoids promoted cell adherence, a precursor for biofilm formation; and (6) RNA sequencing analysis revealed that flavonoids impact expression of putative cell wall and plasma membrane biosynthesis genes. Our findings suggest that the differential effects of quercetin, luteolin, and apigenin on membrane integrity and biofilm formation may be driven by their interactions with fungal cell walls. These insights may inform the development of novel antifungal additives or plant breeding strategies focusing on plant-derived compounds in crop protection.
RESUMO
The ascomycete fungus Aspergillus flavus infects and contaminates corn, peanuts, cottonseed, and tree nuts with toxic and carcinogenic aflatoxins. Subdivision between soil and host plant populations suggests that certain A. flavus strains are specialized to infect peanut, cotton, and corn despite having a broad host range. In this study, the ability of strains isolated from corn and/or soil in 11 Louisiana fields to produce conidia (field inoculum and male gamete) and sclerotia (resting bodies and female gamete) was assessed and compared with genotypic single-nucleotide polymorphism (SNP) differences between whole genomes. Corn strains produced upward of 47× more conidia than strains restricted to soil. Conversely, corn strains produced as much as 3000× fewer sclerotia than soil strains. Aspergillus flavus strains, typified by sclerotium diameter (small S-strains, <400 µm; large L-strains, >400 µm), belonged to separate clades. Several strains produced a mixture (M) of S and L sclerotia, and an intermediate number of conidia and sclerotia, compared with typical S-strains (minimal conidia, copious sclerotia) and L-strains (copious conidia, minimal sclerotia). They also belonged to a unique phylogenetic mixed (M) clade. Migration from soil to corn positively correlated with conidium production and negatively correlated with sclerotium production. Genetic differences correlated with differences in conidium and sclerotium production. Opposite skews in female (sclerotia) or male (conidia) gametic production by soil or corn strains, respectively, resulted in reduced effective breeding population sizes when comparing male:female gamete ratio with mating type distribution. Combining both soil and corn populations increased the effective breeding population, presumably due to contribution of male gametes from corn, which fertilize sclerotia on the soil surface. Incongruencies between aflatoxin clusters, strain morphotype designation, and whole genome phylogenies suggest a history of sexual reproduction within this Louisiana population, demonstrating the importance of conidium production, as infectious propagules and as fertilizers of the A. flavus soil population.
Assuntos
Aspergillus flavus , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Microbiologia do Solo , Esporos Fúngicos , Zea mays , Zea mays/microbiologia , Aspergillus flavus/genética , Aspergillus flavus/classificação , Aspergillus flavus/metabolismo , Doenças das Plantas/microbiologia , Louisiana , Filogenia , GenótipoRESUMO
The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of D-leucine, D-methionine, D-tryptophan, and D-tyrosine and was reported to inhibit biofilm formation via the incorporation of these D-amino acids into the cell wall. Here, we show that L-amino acids were able to specifically reverse the inhibitory effects of their cognate D-amino acids. We also show that D-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding D-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of D-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of D-amino acids without losing the ability to incorporate at least one noncanonical D-amino acid, D-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of D-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis.
Assuntos
Aminoácidos/química , Aminoácidos/farmacologia , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Escherichia coli , Fatores de Tempo , TranscriptomaRESUMO
The bacterial cell wall precursor, Lipid II, has a highly conserved structure among different organisms except for differences in the amino acid sequence of the peptide side chain. Here, we report an efficient and flexible synthesis of the canonical Lipid II precursor required for the assembly of Gram-negative peptidoglycan (PG). We use a rapid LC/MS assay to analyze PG glycosyltransfer (PGT) and transpeptidase (TP) activities of Escherichia coli penicillin binding proteins PBP1A and PBP1B and show that the native m-DAP residue in the peptide side chain of Lipid II is required in order for TP-catalyzed peptide cross-linking to occur in vitro. Comparison of PG produced from synthetic canonical E. coli Lipid II with PG isolated from E. coli cells demonstrates that we can produce PG in vitro that resembles native structure. This work provides the tools necessary for reconstituting cell wall synthesis, an essential cellular process and major antibiotic target, in a purified system.
Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Escherichia coli/química , Peptidoglicano/química , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismoRESUMO
We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14-16, 18) were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14), which was found to display the most favorable bioactivity profile.
Assuntos
Antimaláricos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Antimaláricos/farmacologia , Produtos Biológicos/farmacologia , Malária/tratamento farmacológicoRESUMO
Aspergillus flavus is an opportunistic pathogen responsible for millions of dollars in crop losses annually and negative health impacts on crop consumers globally. A. flavus strains have the potential to produce aflatoxin and other toxic secondary metabolites, which often increase during plant colonization. To mitigate the impacts of this international issue, we employ a range of strategies to directly impact fungal physiology, growth and development, thus requiring knowledge on the underlying molecular mechanisms driving these processes. Here we utilize RNA-sequencing data that are obtained from in situ assays, whereby Zea mays kernels are inoculated with A. flavus strains, to select transcription factors putatively driving virulence-related gene networks. We demonstrate, through growth, sporulation, oxidative stress-response and aflatoxin/CPA analysis, that three A. flavus strains with knockout mutations for the putative transcription factors AFLA_089270, AFLA_112760, and AFLA_031450 demonstrate characteristics such as reduced growth capacity and decreased aflatoxin/CPA accumulation in kernels consistent with decreased fungal pathogenicity. Furthermore, AFLA_089270, also known as HacA, eliminates CPA production and impacts the fungus's capacity to respond to highly oxidative conditions, indicating an impact on plant colonization. Taken together, these data provide a sound foundation for elucidating the downstream molecular pathways potentially contributing to fungal virulence.
RESUMO
Maize (Zea mays L.) is a crop of major economic and food security importance globally. The fall armyworm (FAW), Spodoptera frugiperda, can devastate entire maize crops, especially in countries or markets that do not allow the use of transgenic crops. Host-plant insect resistance is an economical and environmentally benign way to control FAW, and this study sought to identify maize lines, genes, and pathways that contribute to resistance to FAW. Of the 289 maize lines phenotyped for FAW damage in artificially infested, replicated field trials over 3 years, 31 were identified with good levels of resistance that could donate FAW resistance into elite but susceptible hybrid parents. The 289 lines were genotyped by sequencing to provide single nucleotide polymorphism (SNP) markers for a genome-wide association study (GWAS), followed by a metabolic pathway analysis using the Pathway Association Study Tool (PAST). GWAS identified 15 SNPs linked to 7 genes, and PAST identified multiple pathways, associated with FAW damage. Top pathways, and thus useful resistance mechanisms for further study, include hormone signaling pathways and the biosynthesis of carotenoids (particularly zeaxanthin), chlorophyll compounds, cuticular wax, known antibiosis agents, and 1,4-dihydroxy-2-naphthoate. Targeted metabolite analysis confirmed that maize genotypes with lower levels of FAW damage tend to have higher levels of chlorophyll a than genotypes with high FAW damage, which tend to have lower levels of pheophytin, lutein, chlorophyll b and ß-carotene. The list of resistant genotypes, and the results from the genetic, pathway, and metabolic study, can all contribute to efficient creation of FAW resistant cultivars.
Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Animais , Zea mays/genética , Spodoptera/genética , Clorofila A , LarvaRESUMO
Aflatoxins, a family of fungal secondary metabolites, are toxic and carcinogenic compounds that pose an enormous threat to global food safety and agricultural sustainability. Specifically agricultural products in African, Southeast Asian and hot and humid regions of American countries suffer most damage from aflatoxin producing molds due to the ideal climate conditions promoting their growth. Our recent studies suggest that Vibrio gazogenes (Vg), an estuarine bacterium non-pathogenic to plants and humans, can significantly inhibit aflatoxin biosynthesis in the producers. In this study, we investigated the mechanism underlying Vg-dependent aflatoxin inhibition using the prominent aflatoxin producer, Aspergillus flavus. We show that aflatoxin inhibition upon Vg treatment was associated with fungal uptake of Vg-prodigiosin, a red pigment, which was consistently visible inside fungal hyphae during treatment. The association of prodigiosin with aflatoxin inhibition was further evident as Serratia marcescens, another prodigiosin producer, significantly inhibited aflatoxin, while non-producers like Escherichia coli, Staphylococcus aureus, Vibrio harveyi, and Vibrio fischeri did not. Also, pure prodigiosin significantly inhibited aflatoxin biosynthesis. Endocytosis inhibitors, filipin and natamycin, reduced the Vg-prodigiosin uptake by the fungus leading to a significant increase in aflatoxin production, suggesting that uptake is endocytosis-dependent. The Vg treatment also reduced hyphal fusion (>98% inhibition) and branching, which are both endosome-dependent processes. Our results, therefore, collectively support our theory that Vg-associated aflatoxin inhibition is mediated by an endocytosis-dependent uptake of Vg-prodigiosin, which possibly leads to a disruption of normal endosomal functions.
RESUMO
Previously, authors reported that individual volatile organic compounds (VOCs) emitted by non-aflatoxigenic Aspergillus flavus could act as a mechanism of biocontrol to significantly reduce aflatoxins and cyclopiazonic acid (CPA) produced by toxigenic strains. In this study, various combinations and volumes of three mycotoxin-reductive VOCs (2,3-dihydrofuran, 3-octanone and decane) were assessed for their cumulative impacts on four Aspergillus strains (LA1-LA4), which were then analyzed for changes in growth, as well as the production of mycotoxins, including aflatoxins, CPA and multiple indole diterpenes. Fungal growth remained minimally inhibited when exposed to various combinations of VOCs. No single combination was able to consistently, or completely, inhibit aflatoxin or CPA across all toxigenic strains tested. However, the combination of 2,3-dihydrofuran and 3-octanone offered the greatest overall reductions in aflatoxin and CPA production. Despite no elimination of their production, findings showed that combining VOCs produced solely by non-aflatoxigenic A. flavus still inhibited several agriculturally important mycotoxins, including B and G aflatoxins and CPA. Therefore, other VOC combinations are worth testing as post-harvest biocontrol treatments to ensure the prolonged effectiveness of pre-harvest biocontrol efforts.
Assuntos
Aflatoxinas , Micotoxinas , Compostos Orgânicos Voláteis , Aspergillus , Aspergillus flavus , Micotoxinas/toxicidade , Temefós , Compostos Orgânicos Voláteis/farmacologiaRESUMO
Aflatoxins are carcinogenic mycotoxins produced by Aspergillus flavus. They contaminate major food crops, particularly corn, and pose a worldwide health concern. Flavonoid production has been correlated to resistance to aflatoxin accumulation in corn. The effects of flavonoids on fungal proliferation and aflatoxin production are not well understood. In this study, we performed bioassays, fluorescence and scanning electron microscopy, and total antioxidant analysis to determine the effects of three flavonoids (apigenin, luteolin, and quercetin) on proliferation and aflatoxin production in A. flavus NRRL 3357. Results showed that concentrations of apigenin and luteolin modulated fungal proliferation and aflatoxin production in a dose-dependent manner, leading to inhibition or promotion of proliferation and toxin production. Microscopy studies of fungi exposed to flavonoids showed mycelial cell wall disruption, abnormal cell wall invaginations, and tears. Fluorescent enhancement of apigenin and luteolin using Naturstoff reagent A showed that these chemicals localized in sphere-like structures on the mycelia surface. Fungi exposed to low concentrations of apigenin, luteolin, and quercetin lowered the total antioxidant capacity in the environment compared to controls. Our results indicate that flavonoids disrupt cell wall integrity and may localize in vesicle-like structures. We hypothesize that flavonoids could act as potential signaling molecules at low concentrations and change the oxidative state of the microenvironment, either or both of which may lead to reduction of fungal proliferation and aflatoxin production.
RESUMO
Aspergillus fungi produce mycotoxins that are detrimental to human and animal health. Two sections of aspergilli are of particular importance to cereal food crops such as corn and barley. Aspergillus section Flavi species like A. flavus and A. parasiticus produce aflatoxins, while section Circumdati species like A. ochraceus and A. sclerotiorum produce ochratoxin A. Mitigating these toxins in food and feed is a critical and ongoing worldwide effort. We have previously investigated biosynthetic gene clusters in Aspergillus flavus that are linked to fungal virulence in corn. We found that one such cluster, asa, is responsible for the production of aspergillic acid, an iron-binding, hydroxamic acid-containing pyrazinone metabolite. Furthermore, we found that the asa gene cluster is present in many other aflatoxin- and ochratoxin-producing aspergilli. The core gene in the asa cluster encodes the small nonribosomal peptide synthetase-like (NRPS-like) protein AsaC. We have swapped the asaC ortholog from A. sclerotiorum into A. flavus, replacing its native copy, and have also cloned both asaC orthologs into Saccharomyces cerevisiae. We show that AsaC orthologs in section Flavi and section Circumdati, while only containing adenylation-thiolation-reductase (ATR) domains, can selectively biosynthesize distinct pyrazinone natural products: deoxyaspergillic acid and flavacol, respectively. Because pyrazinone natural products and the gene clusters responsible for their production are implicated in a variety of important microbe-host interactions, uncovering the function and selectivity of the enzymes involved could lead to strategies that ultimately benefit human health.