Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Mol Sci ; 20(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185588

RESUMO

A syndrome of multiple paragangliomas/pheochromocytomas, somatostatinoma, and polycythemia due to somatic mosaic gain-of-function mutation of EPAS1, encoding HIF-2α, was previously described. HIF-2α has been implicated in endochondral and intramembranous ossification. Abnormal bone growth of the skull base may lead to Chiari malformation type I. We report two cases of EPAS1 gain-of-function mutation syndrome with Chiari malformation and developmental skull base anomalies. Patients were referred to the Section on Medical Endocrinology, Eunice Kennedy Shriver NICHD, NIH for evaluation of recurrent and metastatic paragangliomas or pheochromocytoma. The syndrome was confirmed genetically by identification of the functional EPAS1 gain-of-function mutation in the resected tumors and circulating leukocytes. Both patients were confirmed for characteristics of EPAS1 gain-of-function mutation syndrome by complete blood count (CBC), plasma biochemistry, and computed tomography (CT) of the abdomen and pelvis. Chiari malformation type I and abnormal bony development of the posterior fossa was found on MRI and CT of the head. The present study implicates EPAS1 mutations in abnormal posterior fossa development resulting in Chiari malformation type I.


Assuntos
Malformação de Arnold-Chiari/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Anormalidades Craniofaciais/genética , Paraganglioma/genética , Adulto , Malformação de Arnold-Chiari/diagnóstico por imagem , Malformação de Arnold-Chiari/patologia , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/patologia , Feminino , Mutação com Ganho de Função , Humanos , Masculino , Pessoa de Meia-Idade , Paraganglioma/diagnóstico por imagem , Paraganglioma/patologia , Síndrome
2.
Neurosurg Focus ; 44(6): E9, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29852762

RESUMO

A 71-year-old female patient was referred in 2013 for evaluation of an asymptomatic nonsecreting pituitary adenoma. The adenoma, measuring 13 mm in height by 10 mm in width, was discovered incidentally on imaging in 2012. Biochemical testing demonstrated a nonfunctioning adenoma. Given the relatively small lesion size and the lack of symptoms, observation was preferred over surgical intervention. The patient was monitored with routine MRI, which until 2016 demonstrated minimal growth. In early 2016, the patient developed recurrence of metastatic breast cancer and was treated with palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor. This inhibitor acts on a pathway believed to be involved in pituitary adenoma tumorigenesis. One year after starting palbociclib, routine imaging demonstrated significant regression of her pituitary adenoma. The authors hypothesize that inhibition of the CDK4/6 pathway by palbociclib contributed to adenoma regression in this patient, and that palbociclib may represent a possible adjuvant therapy for the treatment of nonfunctioning pituitary adenomas.


Assuntos
Adenoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Piperazinas/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Piridinas/uso terapêutico , Adenoma/diagnóstico por imagem , Idoso , Antineoplásicos/farmacologia , Feminino , Humanos , Piperazinas/farmacologia , Neoplasias Hipofisárias/diagnóstico por imagem , Piridinas/farmacologia , Indução de Remissão
3.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36423209

RESUMO

In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds. We focus on the interplay between neuropeptide Y (NPY) and thyrotropin-releasing hormone (TRH), 2 of the most important hypothalamic signaling agents, in modulating the energy balance in a bird model, the zebra finch, Taeniopygia guttata. TRH neurons were confined to a few nuclei in the preoptic area and hypothalamus, and fibers widely distributed. The majority of TRH neurons in the hypothalamic paraventricular nucleus (PVN) whose axons terminate in median eminence were contacted by NPY-containing axons. Compared to fed animals, fasting significantly reduced body weight, PVN pro-TRH messenger RNA (mRNA) and TRH immunoreactivity, but increased NPY mRNA and NPY immunoreactivity in the infundibular nucleus (IN, avian homologue of mammalian arcuate nucleus) and PVN. Refeeding for a short duration restored PVN pro-TRH and IN NPY mRNA, and PVN NPY innervation to fed levels. Compared to control tissues, treatment of the hypothalamic superfused slices with NPY or an NPY-Y1 receptor agonist significantly reduced TRH immunoreactivity, a response blocked by treatment with a Y1-receptor antagonist. We describe a detailed neuroanatomical map of TRH-equipped elements, identify new TRH-producing neuronal groups in the avian brain, and demonstrate rapid restoration of the fasting-induced suppression of PVN TRH following refeeding. We further show that NPY via Y1 receptors may regulate PVN TRH neurons to control energy balance in T. guttata.


Assuntos
Tentilhões , Hormônio Liberador de Tireotropina , Animais , Masculino , Hormônio Liberador de Tireotropina/genética , Neuropeptídeo Y/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/genética
4.
Brain Struct Funct ; 227(7): 2329-2347, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934753

RESUMO

Hypophysiotropic thyrotropin-releasing hormone (TRH) neurons function as metabolic sensors that regulate the thyroid axis and energy homeostasis. Less is known about the role of other hypothalamic TRH neurons. As central administration of TRH decreases food intake and increases histamine in the tuberomammillary nuclei (TMN), and TMN histamine neurons are densely innervated by TRH fibers from an unknown origin, we mapped the location of TRH neurons that project to the TMN. The retrograde tracer, cholera toxin B subunit (CTB), was injected into the TMN E1-E2, E4-E5 subdivisions of adult Sprague-Dawley male rats. TMN projecting neurons were observed in the septum, preoptic area, bed nucleus of the stria terminalis (BNST), perifornical area, anterior paraventricular nucleus, peduncular and tuberal lateral hypothalamus (TuLH), suprachiasmatic nucleus and medial amygdala. However, CTB/pro-TRH178-199 double-labeled cells were only found in the TuLH. The specificity of the retrograde tract-tracing result was confirmed by administering the anterograde tracer, Phaseolus vulgaris leuco-agglutinin (PHAL) into the TuLH. Double-labeled PHAL-pro-TRH boutons were identified in all subdivisions of the TMN. TMN neurons double-labeled for histidine decarboxylase (Hdc)/PHAL, Hdc/Trh receptor (Trhr), and Hdc/Trh. Further confirmation of a TuLH-TRH neuronal projection to the TMN was established in a transgenic mouse that expresses Cre recombinase in TRH-producing cells following microinjection of a Cre recombinase-dependent AAV that expresses mCherry into the TuLH. We conclude that, in rodents, the TRH innervation of TMN originates in part from TRH neurons in the TuLH, and that this TRH population may contribute to regulate energy homeostasis through histamine Trhr-positive neurons of the TMN.


Assuntos
Região Hipotalâmica Lateral , Hormônio Liberador de Tireotropina , Animais , Histamina , Masculino , Camundongos , Neurônios , Ratos , Ratos Sprague-Dawley
5.
Mol Metab ; 53: 101312, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329773

RESUMO

OBJECTIVE: Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential regulators of energy balance. Selective loss of POMC production in these cells results in extreme obesity and metabolic comorbidities. Neurogenesis occurs in the adult hypothalamus, but it remains uncertain whether functional POMC neurons emerge in physiologically significant numbers during adulthood. Here, we tested whether Rax-expressing precursors generate POMC neurons in adult mice and rescue the metabolic phenotype caused by congenital hypothalamic POMC deficiency. METHODS: Initially, we identified hypothalamic Rax-expressing cell types using wild-type and Rax-CreERT2:Ai34D mice. Then we generated compound Rax-CreERT2:ArcPomcloxTB/loxTB mice in which endogenous hypothalamic Pomc expression is silenced, but can be restored by tamoxifen administration selectively in neurons derived from Rax+ progenitors. The number of POMC neurons generated by Rax+ progenitors in adult mice and their axonal projections was determined. The metabolic effects of these neurons were assessed by measuring food intake, bodyweight, and body composition, along with glucose and insulin levels. RESULTS: We found that Rax is expressed by tanycytes and a previously unrecognized cell type in the hypothalamic parenchyma of adult mice. Rax+ progenitors generated ~10% of the normal adult hypothalamic POMC neuron population within two weeks of tamoxifen treatment. The same rate and steady state of POMC neurogenesis persisted from young adult to aged mice. These new POMC neurons established terminal projections to brain regions that were involved in energy homeostasis. Mice with Rax+ progenitor-derived POMC neurons had reduced body fat mass, improved glucose tolerance, increased insulin sensitivity, and decreased bodyweight in proportion to the number of new POMC neurons. CONCLUSIONS: These data demonstrate that Rax+ progenitors generate POMC neurons in sufficient numbers during adulthood to mitigate the metabolic abnormalities of hypothalamic POMC-deficient mice. The findings suggest that adult hypothalamic neurogenesis is a robust phenomenon in mice that can significantly impact energy homeostasis.


Assuntos
Insuficiência Adrenal/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição/genética
6.
Brain Struct Funct ; 226(8): 2537-2559, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34392422

RESUMO

The mesolimbic dopamine (DA)-pathway regulates food-reward, feeding-related behaviour and energy balance. Evidence underscores the importance of feeding-related neuropeptides in modulating activity of these DA neurons. The neuropeptide, CART, a crucial regulator of energy balance, modulates DA-release, and influences the activity of ventral tegmental area (VTA) DAergic neurons in the mammalian brain. Whether CART- and DA-containing systems interact at the level of VTA to regulate energy balance, however, is poorly understood. We explored the interaction between CART- and DA-containing systems in midbrain of the zebra finch, Taeniopygia guttata, an interesting model to study dynamic changes in energy balance due to higher BMR/daytime body temperature, and rapid responsiveness of the feeding-related neuropeptides to changes in energy state. Further, its midbrain DA-neurons share similarities with those in mammals. In the midbrain, tyrosine hydroxylase-immunoreactive (TH-i) neurons were seen in the substantia nigra (SN) and VTA [anterior (VTAa), mid (VTAm) and caudal (VTAc)]; those in VTA were smaller. In the VTA, CART-immunoreactive (CART-i)-fibers densely innervated TH-i neurons, and both CART-immunoreactivity (CART-ir) and TH-immunoreactivity (TH-ir) responded to energy status-dependent changes. Compared to fed and fasted birds, refeeding dramatically enhanced TH-ir and the percentage of TH-i neurons co-expressing FOS in the VTA. Increased prepro-CART-mRNA, CART-ir and a transient appearance of CART-i neurons was observed in VTAa of fasted, but not fed birds. To test the functional interaction between CART- and DA-containing systems, ex-vivo superfused midbrain-slices were treated with CART-peptide and changes in TH-ir analysed. Compared to control tissues, CART-treatment increased TH-ir in VTA but not SN. We propose that CART is a potential regulator of VTA DA-neurons and energy balance in T. guttata.


Assuntos
Tentilhões , Neuropeptídeos , Animais , Dopamina , Neurônios Dopaminérgicos/metabolismo , Tentilhões/metabolismo , Proteínas do Tecido Nervoso , Neuropeptídeos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo
7.
Endocr Relat Cancer ; 27(8): T1-T8, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32464600

RESUMO

Forty years ago, physicians caring for the J-kindred, a 100+ member family with multiple endocrine neoplasia type 2A (MEN2A), hypothesized that early thyroidectomy based on measurement of the biomarker calcitonin could cure patients at risk for development of medullary thyroid carcinoma (MTC). We re-evaluated 22 family members with proven RET proto-oncogene mutations (C634G) who underwent thyroidectomy and central lymphadenectomy between 1972 and 1994 based on stimulated calcitonin abnormalities. Current disease status was evaluated by serum calcitonin measurement and neck ultrasound in 18 of the 22 prospectively screened patients. The median age of the cohort at thyroidectomy was 16.5 years (range 9-24). The median duration of follow-up at the time of examination was 40 years (range 21-43) with a median current age of 52 years (range 34-65). Fifteen of the 18 patients had no detectable serum calcitonin (<2 pg/mL). Three had detectable serum calcitonin measurements, inappropriately elevated following total thyroidectomy. None of the 16 patients imaged had an abnormal ultrasound. Survival analysis shows no MTC-related deaths in the prospectively screened patients, whereas there were many in prior generations. Early thyroidectomy based on biomarker testing has rendered 15 of 18 MEN2A patients (83%) calcitonin-free with a median follow-up period of 40 years. There have been no deaths in the prospectively screened and thyroidectomized group. We conclude that early thyroidectomy and central lymph node dissection is an effective prophylactic treatment for hereditary MTC.


Assuntos
Neoplasia Endócrina Múltipla/cirurgia , Tireoidectomia/métodos , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Proto-Oncogene Mas , Fatores de Tempo , Adulto Jovem
8.
J Comp Neurol ; 528(11): 1833-1855, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31950494

RESUMO

The hypothalamus contains catecholaminergic neurons marked by the expression of tyrosine hydroxylase (TH). As multiple chemical messengers coexist in each neuron, we determined if hypothalamic TH-immunoreactive (ir) neurons express vesicular glutamate or GABA transporters. We used Cre/loxP recombination to express enhanced GFP (EGFP) in neurons expressing the vesicular glutamate (vGLUT2) or GABA transporter (vGAT), then determined whether TH-ir neurons colocalized with native EGFPVglut2 - or EGFPVgat -fluorescence, respectively. EGFPVglut2 neurons were not TH-ir. However, discrete TH-ir signals colocalized with EGFPVgat neurons, which we validated by in situ hybridization for Vgat mRNA. To contextualize the observed pattern of colocalization between TH-ir and EGFPVgat , we first performed Nissl-based parcellation and plane-of-section analysis, and then mapped the distribution of TH-ir EGFPVgat neurons onto atlas templates from the Allen Reference Atlas (ARA) for the mouse brain. TH-ir EGFPVgat neurons were distributed throughout the rostrocaudal extent of the hypothalamus. Within the ARA ontology of gray matter regions, TH-ir neurons localized primarily to the periventricular hypothalamic zone, periventricular hypothalamic region, and lateral hypothalamic zone. There was a strong presence of EGFPVgat fluorescence in TH-ir neurons across all brain regions, but the most striking colocalization was found in a circumscribed portion of the zona incerta (ZI)-a region assigned to the hypothalamus in the ARA-where every TH-ir neuron expressed EGFPVgat . Neurochemical characterization of these ZI neurons revealed that they display immunoreactivity for dopamine but not dopamine ß-hydroxylase. Collectively, these findings indicate the existence of a novel mouse hypothalamic population that may signal through the release of GABA and/or dopamine.


Assuntos
Hipotálamo/citologia , Neurônios/citologia , Neurônios/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
9.
iScience ; 23(3): 100921, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32143135

RESUMO

Based on the type-I cannabinoid receptor (CB1) content of hypophysiotropic axons and the involvement of tanycytes in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis, we hypothesized that endocannabinoids are involved in the tanycyte-induced regulation of TRH release in the median eminence (ME). We demonstrated that CB1-immunoreactive TRH axons were associated to DAGLα-immunoreactive tanycyte processes in the external zone of ME and showed that endocannabinoids tonically inhibit the TRH release in this tissue. We showed that glutamate depolarizes the tanycytes, increases their intracellular Ca2+ level and the 2-AG level of the ME via AMPA and kainite receptors and glutamate transport. Using optogenetics, we demonstrated that glutamate released from TRH neurons influences the tanycytes in the ME. In summary, tanycytes regulate TRH secretion in the ME via endocannabinoid release, whereas TRH axons regulate tanycytes by glutamate, suggesting the existence of a reciprocal microcircuit between tanycytes and TRH terminals that controls TRH release.

10.
Endocrinology ; 150(1): 98-103, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18818298

RESUMO

Hypophysiotropic TRH-synthesizing neurons of the hypothalamic paraventricular nucleus (PVN) have a critical role in the regulation of the energy homeostasis through control of the hypothalamic-pituitary-thyroid axis. Recently, endocannabinoids have been shown to exert inhibitory effects on TRH neurons via the type 1 cannabinoid receptor (CB1). To understand the anatomical basis for this regulatory mechanism, we determined whether CB1 is contained in axons innervating hypophysiotropic TRH neurons using a recently developed antiserum against the C-terminal portion of mouse CB1. CB1-immunoreactive axons densely innervated the parvicellular subdivisions of the PVN where the hypophysiotropic TRH neurons are located. By double-labeling immunocytochemistry, CB1-immunoreactive varicosities were observed in juxtaposition to the vast majority of TRH neurons in the PVN. At the ultrastructural level, CB1-immunoreactivity was observed in the preterminal portion of axons establishing both symmetric and asymmetric synaptic specializations with the perikarya and dendrites of TRH neurons in the PVN. These data demonstrate that CB1 is abundantly present in axons that are in synaptic association with hypophysiotropic TRH neurons, indicating an important role for endocannabinoids in the regulation of the hypothalamic-pituitary-thyroid axis. The presence of both symmetric and asymmetric type CB1 synapses on TRH neurons in the PVN suggests that endocannabinoids may influence both excitatory and inhibitory inputs of these neurons.


Assuntos
Axônios/fisiologia , Neurônios/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Sinapses/fisiologia , Hormônio Liberador de Tireotropina/biossíntese , Animais , Axônios/ultraestrutura , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos , Microscopia Eletrônica , Neurônios/ultraestrutura , Sinapses/ultraestrutura
11.
eNeuro ; 6(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30957016

RESUMO

Hypothalamic POMC deficiency leads to obesity and metabolic deficiencies, largely due to the loss of melanocortin peptides. However, POMC neurons in the arcuate nucleus (ARC) are comprised of glutamatergic and GABAergic subpopulations. The developmental program, relative proportion and function of these two subpopulations are unresolved. To test whether glutamatergic POMC neurons serve a distinct role in maintaining energy homeostasis, we activated Pomc expression Cre- dependently in Vglut2-expressing neurons of mice with conditionally silenced Pomc alleles. The Vglut2-Pomc restored mice had normal ARC Pomc mRNA levels, POMC immunoreactivity, as well as body weight and body composition at age 12 weeks. Unexpectedly, the cumulative total of Vglut2+ glutamatergic- and Gad67+ GABAergic-Pomc neurons detected by in situ hybridization (ISH) exceeded 100% in both Vglut2- Pomc restored and control mice, indicating that a subpopulation of Pomc neurons must express both neuronal markers. Consistent with this hypothesis, triple ISH of C57BL/6J hypothalami revealed that 35% of ARC Pomc neurons were selectively Gad67+, 21% were selectively Vglut2+, and 38% expressed both Gad67 and Vglut2. The single Gad67+ and Vglut2+Pomc neurons were most prevalent in the rostral ARC, while the Vglut2/Gad67+ dual-phenotype cells predominated in the caudal ARC. A lineage trace using Ai9-tdTomato reporter mice to label fluorescently all Vglut2-expressing neurons showed equal numbers of tdTomato+ and tdTomato- POMC immunoreactive neurons. Together, these data suggest that POMC neurons exhibit developmental plasticity in their expression of glutamatergic and GABAergic markers, enabling re-establishment of normal energy homeostasis in the Vglut2-Pomc restored mice.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
12.
Thyroid ; 29(12): 1858-1868, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659941

RESUMO

Background: Glycine is a classical neurotransmitter that has role in both inhibitory and excitatory synapses. To understand whether glycinergic inputs are involved in the regulation of the hypophysiotropic thyrotropin-releasing hormone (TRH) neurons, the central controllers of the hypothalamic-pituitary-thyroid axis, the glycinergic innervation of the TRH neurons was studied in the hypothalamic paraventricular nucleus (PVN). Methods: Double-labeling immunocytochemistry and patch-clamp electrophysiology were used to determine the role of glycinergic neurons in the regulation of TRH neurons in the PVN. Anterograde and retrograde tracing methods were used to determine the sources of the glycinergic input of TRH neurons. Results: Glycine transporter-2 (GLYT2), a marker of glycinergic neurons, containing axons were found to establish symmetric type of synapses on TRH neurons in the PVN. Furthermore, glycine receptor immunoreactivity was observed in these TRH neurons. The raphe magnus (RMg) and the ventrolateral periaqueductal gray (VLPAG) were found to be the exclusive sources of the glycinergic innervation of the TRH neurons within the PVN. Patch-clamp electrophysiology using sections of TRH-IRES-tdTomato mice showed that glycine hyperpolarized the TRH neurons and completely blocked the firing of these neurons. Glycine also markedly hyperpolarized the TRH neurons in the presence of tetrodotoxin demonstrating the direct effect of glycine. In more than 60% of the TRH neurons, spontaneous inhibitory postsynaptic currents (sIPSCs) were observed, even after the pharmacological inhibition of glutamatergic and GABAergic neuronal transmission. The glycine antagonist, strychnine, almost completely abolished these sIPSCs, demonstrating the inhibitory nature of the glycinergic input of TRH neurons. Conclusions: These data demonstrate that TRH neurons in the PVN receive glycinergic inputs from the RMg and the VLPAG. The symmetric type of synaptic connection and the results of the electrophysiological experiments demonstrate the inhibitory nature of these inputs.


Assuntos
Glicina/fisiologia , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Hormônio Liberador de Tireotropina/farmacologia , Animais , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Receptores de Glicina/efeitos dos fármacos , Receptores de Glicina/imunologia , Sinapses/efeitos dos fármacos , Tetrodotoxina/farmacologia
13.
J Comp Neurol ; 527(6): 1070-1101, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30370602

RESUMO

Thyrotropin-releasing hormone (TRH) regulates the hypothalamic-pituitary-thyroid axis in mammals and also regulates prolactin secretion, directly or indirectly via tuberoinfundibular dopamine neurons. Although TRH is abundantly expressed in teleost brain and believed to mediate neuronal communication, empirical evidence is lacking. We analyzed pro-TRH-mRNA expression, mapped TRH-immunoreactive elements in the brain and pituitary, and explored its role in regulation of hypophysiotropic dopamine (DA) neurons in the catfish, Clarias batrachus. Partial pro-TRH transcript from C. batrachus transcriptome showed six TRH progenitors repeats. Quantitative real-time polymerase chain reaction (qRT-PCR) identified pro-TRH transcript in a number of different brain regions and immunofluorescence showed TRH-immunoreactive cells/fibers in the olfactory bulb, telencephalon, preoptic area (POA), hypothalamus, midbrain, hindbrain, and spinal cord. In the pituitary, TRH-immunoreactive fibers were seen in the neurohypophysis, proximal pars distalis, and pars intermedia but not rostral pars distalis. In POA, distinct TRH-immunoreactive cells/fibers were seen in nucleus preopticus periventricularis anterior (NPPa) that demonstrated a significant increase in TRH-immunoreactivity when collected during preparatory and prespawning phases, reaching a peak in the spawning phase. Although tyrosine hydroxylase (TH)-immunoreactive neurons in NPPa are hypophysiotropic, none of the TRH-immunoreactive neurons in NPPa accumulated neuronal tracer DiI following implants into the pituitary. However, 87 ± 1.6% NPPa TH-immunoreactive neurons were surrounded by TRH-immunoreactive axons that were seen in close proximity to the somata. Superfused POA slices treated with TRH (0.5-2 µM) significantly reduced TH concentration in tissue homogenates and the percent TH-immunoreactive area in the NPPa. We suggest that TRH in the brain of C. batrachus regulates a range of physiological functions but in particular, serves as a potential regulator of hypophysiotropic DA neurons and reproduction.


Assuntos
Encéfalo/fisiologia , Peixes-Gato/fisiologia , Neurônios Dopaminérgicos/fisiologia , Hipófise/fisiologia , Hormônio Liberador de Tireotropina/metabolismo , Animais , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia
14.
JAMA Netw Open ; 2(8): e198898, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31397861

RESUMO

Importance: Large studies investigating long-term outcomes of patients with bilateral pheochromocytomas treated with either total or cortical-sparing adrenalectomies are needed to inform clinical management. Objective: To determine the association of total vs cortical-sparing adrenalectomy with pheochromocytoma-specific mortality, the burden of primary adrenal insufficiency after bilateral adrenalectomy, and the risk of pheochromocytoma recurrence. Design, Setting, and Participants: This cohort study used data from a multicenter consortium-based registry for 625 patients treated for bilateral pheochromocytomas between 1950 and 2018. Data were analyzed from September 1, 2018, to June 1, 2019. Exposures: Total or cortical-sparing adrenalectomy. Main Outcomes and Measures: Primary adrenal insufficiency, recurrent pheochromocytoma, and mortality. Results: Of 625 patients (300 [48%] female) with a median (interquartile range [IQR]) age of 30 (22-40) years at diagnosis, 401 (64%) were diagnosed with synchronous bilateral pheochromocytomas and 224 (36%) were diagnosed with metachronous pheochromocytomas (median [IQR] interval to second adrenalectomy, 6 [1-13] years). In 505 of 526 tested patients (96%), germline mutations were detected in the genes RET (282 patients [54%]), VHL (184 patients [35%]), and other genes (39 patients [7%]). Of 849 adrenalectomies performed in 625 patients, 324 (52%) were planned as cortical sparing and were successful in 248 of 324 patients (76.5%). Primary adrenal insufficiency occurred in all patients treated with total adrenalectomy but only in 23.5% of patients treated with attempted cortical-sparing adrenalectomy. A third of patients with adrenal insufficiency developed complications, such as adrenal crisis or iatrogenic Cushing syndrome. Of 377 patients who became steroid dependent, 67 (18%) developed at least 1 adrenal crisis and 50 (13%) developed iatrogenic Cushing syndrome during median (IQR) follow-up of 8 (3-25) years. Two patients developed recurrent pheochromocytoma in the adrenal bed despite total adrenalectomy. In contrast, 33 patients (13%) treated with successful cortical-sparing adrenalectomy developed another pheochromocytoma within the remnant adrenal after a median (IQR) of 8 (4-13) years, all of which were successfully treated with another surgery. Cortical-sparing surgery was not associated with survival. Overall survival was associated with comorbidities unrelated to pheochromocytoma: of 63 patients who died, only 3 (5%) died of metastatic pheochromocytoma. Conclusions and Relevance: Patients undergoing cortical-sparing adrenalectomy did not demonstrate decreased survival, despite development of recurrent pheochromocytoma in 13%. Cortical-sparing adrenalectomy should be considered in all patients with hereditary pheochromocytoma.


Assuntos
Neoplasias das Glândulas Suprarrenais/cirurgia , Adrenalectomia/mortalidade , Tratamentos com Preservação do Órgão/mortalidade , Feocromocitoma/cirurgia , Neoplasias das Glândulas Suprarrenais/mortalidade , Adrenalectomia/efeitos adversos , Adrenalectomia/métodos , Adulto , Feminino , Humanos , Masculino , Morbidade , Recidiva Local de Neoplasia , Feocromocitoma/mortalidade , Sistema de Registros , Estudos Retrospectivos , Adulto Jovem
15.
Endocrinology ; 149(5): 2484-93, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18218695

RESUMO

To determine whether endotoxin-induced activation of type 2 iodothyronine deiodinase (D2) in the mediobasal hypothalamus is dependent on circulating levels of corticosterone, the effect of bacterial lipopolysaccharide (LPS) on D2 gene expression was studied in adrenalectomized, corticosterone-clamped adult, male, Sprague Dawley rats. In sham-adrenalectomized animals, LPS (250 microg/100 g body weight) increased circulating levels of corticosterone and IL-6, as well as tanycyte D2 mRNA in the mediobasal hypothalamus. Adrenalectomized, corticosterone-clamped animals showed no significant rise in corticosterone after LPS, compared with saline-treated controls but increased IL-6 levels and tanycyte D2 mRNA similar to LPS-treated sham controls. To further clarify the potential role of corticosterone in the regulation of D2 gene expression by LPS, animals were administered high doses of corticosterone to attain levels similar to that observed in the LPS-treated group. No significant increase in D2 mRNA was observed in the mediobasal hypothalamus with the exception of a small subpopulation of cells in the lateral walls of the third ventricle. These data indicate that the LPS-induced increase in D2 mRNA in the mediobasal hypothalamus is largely independent of circulating corticosterone and indicate that mechanisms other than adrenal activation are involved in the regulation of most tanycyte D2-expressing cells by endotoxin.


Assuntos
Corticosterona/fisiologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/enzimologia , Iodeto Peroxidase/biossíntese , Lipopolissacarídeos/farmacologia , Animais , Corticosterona/sangue , Corticosterona/farmacologia , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Hipotálamo/metabolismo , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/fisiologia , Iodeto Peroxidase/genética , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Iodotironina Desiodinase Tipo II
16.
Endocrinology ; 149(5): 2283-92, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18187539

RESUMO

To determine whether the p44/p42 MAPK (ERK1/2) signaling pathway is involved in the activation of CRH-containing neurons in the hypothalamic paraventricular nucleus (PVN) after bacterial lipopolysaccharide (LPS) administration, Sprague Dawley rats were injected with LPS, and studied after 2, 6, 9, and 12 h. In saline-treated controls, isolated weak phosphorylated (phospho)ERK1/2 immunoreactive neurons were observed in the PVN. However, a dramatic increase in phospho-ERK1/2 immunoreactivity was apparent in the PVN 2 h after LPS administration, and gradually declined to baseline levels 9-12 h after injection. By double-labeling immunofluorescence, all CRH-containing neurons in the PVN contained phospho-ERK1/2 2 h after LPS. Intracerebroventricular administration of the MAPK inhibitor, PD98059, prevented LPS-induced ERK1/2 phosphorylation, c-fos activation, and the increase of CRH gene expression in the PVN but had no effect on c-fos activation in brainstem A2-C1/C2 regions. We conclude that LPS rapidly increases the phospho-ERK1/2 in CRH-containing neurons in the PVN and that activation of MAPKs is necessary for LPS-induced activation of the hypothalamic-pituitary-adrenal axis.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Lipopolissacarídeos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Hormônio Liberador da Corticotropina/genética , Ativação Enzimática/efeitos dos fármacos , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
17.
Endocrinology ; 149(9): 4329-35, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18467436

RESUMO

To explore the effect of refeeding on recovery of TRH gene expression in the hypothalamic paraventricular nucleus (PVN) and its correlation with the feeding-related neuropeptides in the arcuate nucleus (ARC), c-fos immunoreactivity (IR) in the PVN and ARC 2 h after refeeding and hypothalamic TRH, neuropeptide Y (NPY) and agouti-related protein (AGRP) mRNA levels 4, 12, and 24 h after refeeding were studied in Sprague-Dawley rats subjected to prolonged fasting. Despite rapid reactivation of proopiomelanocortin neurons by refeeding as demonstrated by c-fos IR in ARC alpha-MSH-IR neurons and ventral parvocellular subdivision PVN neurons, c-fos IR was present in only 9.7 +/- 1.1% hypophysiotropic TRH neurons. Serum TSH levels remained suppressed 4 and 12 h after the start of refeeding, returning to fed levels after 24 h. Fasting reduced TRH mRNA compared with fed animals, and similar to TSH, remained suppressed at 4 and 12 h after refeeding, returning toward normal at 24 h. AGRP and NPY gene expression in the ARC were markedly elevated in fasting rats, AGRP mRNA returning to baseline levels 12 h after refeeding and NPY mRNA remaining persistently elevated even at 24 h. These data raise the possibility that refeeding-induced activation of melanocortin signaling exerts differential actions on its target neurons in the PVN, an early action directed at neurons that may be involved in satiety, and a later action on hypophysiotropic TRH neurons involved in energy expenditure, potentially mediated by sustained elevations in AGRP and NPY. This response may be an important homeostatic mechanism to allow replenishment of depleted energy stores associated with fasting.


Assuntos
Ingestão de Alimentos/fisiologia , Melanocortinas/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Jejum/fisiologia , Masculino , Neurônios/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tireotropina/genética , Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo
18.
Neuropsychopharmacology ; 33(5): 1127-36, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17637604

RESUMO

We studied the involvement of cocaine- and amphetamine-regulated transcript peptide (CART) in the central nucleus of amygdala (CeA), lateral bed nucleus of the stria terminalis (BNSTl) and nucleus accumbens shell (AcbSh) in generation of ethanol withdrawal symptoms, with particular focus on anxiety-like behavior using a social interaction test. Administration of CART (54-102) into the lateral ventricle (50 and 100 ng) and bilaterally in the CeA (10 and 20 ng) caused a significant reduction in social interaction, suggesting an anxiogenic action of the peptide. Chronic ethanol treatment for 15 days followed by withdrawal precipitated an anxiogenic response at 24 h that was attenuated by intracerebroventricular (5 mul) and intra-CeA (1 mul) administration of antibodies against CART (1 : 500 dilution). An immunocytochemistry protocol was employed to study the response of the endogenous CART system in the CeA following chronic ethanol withdrawal. At 0 h ethanol withdrawal, CART immunoreactivity was apparent in few fibers and the profile was similar to that in the pair-fed control rats. Twenty-four hours following ethanol withdrawal, a highly significant increase (P<0.001) in CART immunoreactivity was noticed in the CeA, which returned to normal 48 and 72 h post-withdrawal. Similar doses of CART or CART antibody injected bilaterally into the BNSTl or AcbSh produced no response in the social interaction test. Furthermore, the CART immunoreactivity profile did not change at the post-withdrawal time points in each of these brain sites. We suggest that CART may mediate the early signs of anxiety-like behavior induced by ethanol withdrawal within the neuroanatomical framework of the CeA.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Ansiedade , Etanol/efeitos adversos , Proteínas do Tecido Nervoso/administração & dosagem , Síndrome de Abstinência a Substâncias/etiologia , Tonsila do Cerebelo/metabolismo , Análise de Variância , Animais , Anticorpos/administração & dosagem , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/patologia , Comportamento Animal , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Relações Interpessoais , Masculino , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos Septais/efeitos dos fármacos , Fatores de Tempo
19.
J Chem Neuroanat ; 36(3-4): 239-50, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18675898

RESUMO

Cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) are involved in the regulation of food intake, body weight, pituitary hormones, and reproduction. While CART and NPY occupy overlapping fields in the brain of mammals, little is known about the interaction between these peptide-containing systems in other vertebrates. We explored neuroanatomical associations between CART and NPY in the olfactory system, forebrain and pituitary of the catfish, Clarias batrachus, using double immunofluorescence method. NPY-containing fascicles from olfactory receptor neurons innervated the olfactory glomeruli and mitral cell layer in close association with CART-containing terminal fields. Distinct CART- or NPY-containing fibers were seen in the medial olfactory tract. In the dorsal telencephalon, CART- and NPY-immunoreactive axons were closely associated in area dorsalis telencephali/pars lateralis dorsalis (Dld), and posterioris (Dlp). In the ventral telencephalon, while most of the cells of nucleus entopeduncularis (NE) showed the presence of CART as well as NPY, a few cells with only NPY-immunoreactivity were observed. Similarly, a CART and NPY colocalized cell population was prominent in the preoptic area (POA); and a small population of cells with NPY-immunoreactivity was also evident. Other areas where CART and NPY were colocalized included fibers in the tuberal area, inferior lobe, neurohypophysis, proximal pars distalis and pars intermedia of the pituitary. No association between CART and NPY was observed in the thalamus and habenular ganglion. These results suggest that CART- and NPY-peptidergic systems may interact in NE, POA, tuberal area, certain telencephalic areas and pituitary and jointly process information relating to reproduction, feeding and neuroendocrine regulation.


Assuntos
Peixes-Gato/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Neuropeptídeo Y/biossíntese , Hipófise/metabolismo , Prosencéfalo/metabolismo , Animais , Especificidade de Anticorpos , Axônios/metabolismo , Contagem de Células , Diencéfalo/citologia , Diencéfalo/metabolismo , Feminino , Imunofluorescência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neuropeptídeo Y/genética , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Hipófise/citologia , Prosencéfalo/citologia , Telencéfalo/citologia , Telencéfalo/metabolismo
20.
J Comp Neurol ; 526(15): 2444-2461, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30242838

RESUMO

We recently reported that the number of hypothalamic tanycytes expressing pro-opiomelanocortin (Pomc) is highly variable among brains of adult rats. While its cause and significance remain unknown, identifying other variably expressed genes in tanycytes may help understand this curious phenomenon. In this in situ hybridization study, we report that the Prss56 gene, which encodes a trypsin-like serine protease and is expressed in neural stem/progenitor cells, shows a similarly variable mRNA expression in tanycytes of adult rats and correlates inversely with tanycyte Pomc mRNA. Prss56 was expressed in α1, ß1, subsets of α2, and some median eminence γ tanycytes, but virtually absent from ß2 tanycytes. Prss56 was also expressed in vimentin positive tanycyte-like cells in the parenchyma of the ventromedial and arcuate nuclei, and in thyrotropin beta subunit-expressing cells of the pars tuberalis of the pituitary. In contrast to adults, Prss56 expression was uniformly high in tanycytes in adolescent rats. In mice, Prss56-expressing tanycytes and parenchymal cells were also observed but fewer in number and without significant variations. The results identify Prss56 as a second gene that is expressed variably in tanycytes of adult rats. We propose that the variable, inversely correlating expression of Prss56 and Pomc reflect periodically oscillating gene expression in tanycytes rather than stable expression levels that vary between individual rats. A possible functional link between Prss56 and POMC, and Prss56 as a potential marker for migrating tanycytes are discussed.


Assuntos
Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Pró-Opiomelanocortina/biossíntese , Pró-Opiomelanocortina/genética , Serina Proteases/biossíntese , Serina Proteases/genética , Envelhecimento/metabolismo , Animais , Contagem de Células , Células Ependimogliais/classificação , Feminino , Regulação da Expressão Gênica , Hipotálamo/química , Antígeno Ki-67/metabolismo , Masculino , Hipófise/metabolismo , Ratos , Ratos Sprague-Dawley , Serina Proteases/metabolismo , Terminologia como Assunto , Tireotropina/biossíntese , Tireotropina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA