Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902477

RESUMO

The recent tendency to delay pregnancy has increased the incidence of age-related infertility, as female reproductive competence decreases with aging. Along with aging, a lowered capacity of antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage. Therefore, advancements have been made in assisted reproduction to resolve infertility caused by reproductive aging and oxidative stress, following an emphasis on their use. The application of mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been reported to be as effective as that of direct treatment of source cells. In this review, we summarized the current understanding of female reproductive aging and oxidative stress and present MSC-CM, which could be developed as a promising antioxidant intervention for assisted reproductive technology.


Assuntos
Infertilidade , Células-Tronco Mesenquimais , Gravidez , Humanos , Feminino , Antioxidantes/farmacologia , Meios de Cultivo Condicionados/farmacologia , Estresse Oxidativo , Envelhecimento , Reprodução
2.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270040

RESUMO

Dystrophinopathy is caused by mutations in the dystrophin gene, which lead to progressive muscle degeneration, necrosis, and finally, death. Recently, golden retrievers have been suggested as a useful animal model for studying human dystrophinopathy, but the model has limitations due to difficulty in maintaining the genetic background using conventional breeding. In this study, we successfully generated a dystrophin mutant dog using the CRISPR/Cas9 system and somatic cell nuclear transfer. The dystrophin mutant dog displayed phenotypes such as elevated serum creatine kinase, dystrophin deficiency, skeletal muscle defects, an abnormal electrocardiogram, and avoidance of ambulation. These results indicate that donor cells with CRISPR/Cas9 for a specific gene combined with the somatic cell nuclear transfer technique can efficiently produce a dystrophin mutant dog, which will help in the successful development of gene therapy drugs for dogs and humans.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Sistemas CRISPR-Cas/genética , Cães , Distrofina/genética , Distrofina/metabolismo , Edição de Genes , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Técnicas de Transferência Nuclear
3.
J Cell Physiol ; 236(4): 2869-2880, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32944961

RESUMO

Endoplasmic reticulum (ER) stress is a major contributor to embryonic development failure. Mammalian oocytes have a high risk of exposure to cellular stress during in vitro embryo production. We investigated the effects of zinc supplementation during in vitro maturation under ER stress. We evaluated cumulus expansion, embryonic development derived by parthenogenetic activation, reactive oxygen species, protein expression of X-box binding protein 1 (XBP1), and expression of genes related to ER stress. Supplementation with 1 µg/ml zinc significantly increased the nuclear maturation of oocytes, cleavage and blastocyst formation rates, and total blastocyst cell number (p < .05). Under ER stress, zinc significantly reduced protein expression of XBP1, and increased cleavage and blastocyst rates (p < .05). Concomitantly, zinc supplementation upregulated the expression of zinc transporters (SLC39A14 and SLC39A10), PTGS2, and downregulated ER stress-related genes (sXBP1, uXBP1, ATF4, and PTPN1/PTP1B), and caspase 3. These results suggest that zinc supplementation alleviates ER stress by providing essential metal-ion transporters for oocyte maturation and subsequent embryonic development.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos , Oócitos/efeitos dos fármacos , Sulfato de Zinco/farmacologia , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/metabolismo , Partenogênese , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Espécies Reativas de Oxigênio , Sus scrofa , Regulação para Cima , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Sulfato de Zinco/metabolismo
4.
BMC Biotechnol ; 21(1): 1, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413301

RESUMO

BACKGROUND: Small animals that show a deficiency in klotho exhibit extremely shortened life span with multiple aging-like phenotypes. However, limited information is available on the function of klotho in large animals such as pigs. RESULTS: In an attempt to produce klotho knockout pigs, an sgRNA specific for klotho (targeting exon 3) was designed and Cas9-sgRNA ribonucleoproteins were transfected into porcine fibroblasts. Transfected fibroblasts were cultured for one to 2 days and then directly used for nuclear transfer without selection. The cloned embryos were cultured in vitro for 7 days and analyzed to detect modifications of the klotho gene by both T7E1 and deep sequencing analysis. Modification succeeded in 13 of 20 blastocysts (65%), 8 of which (40.0%) were monoallelic modifications and 5 (25.0%) were biallelic modifications. Based on high mutation rates in blastocysts, we transferred the cloned embryos to 5 recipient pigs; 1 recipient was pregnant and 16 fetuses were recovered at Day 28 post transfer. Of the 16 fetuses, 9 were resorbing and 7 were viable. Four of 9 (44.4%) resorbing fetuses and 3 of the 7 (42.9%) viable fetuses had monoallelic modifications. Thus, 3 klotho monoallelic knockout cell lines were established by primary culture. A total of 2088 cloned embryos reconstructed with 2 frame-shifted cell lines were transferred to 11 synchronized recipients. Of the recipients, 7 of 11 eleven (63.6%) became pregnant. However, none of the pregnancies was maintained to term. To discover why klotho monoallelic knockout fetuses were aborted, expression of aging- and apoptosis-related genes and klotho protein in placentas from klotho monoallelic knockout and wild-type fetuses was investigated. Placentas from klotho monoallelic knockout fetuses showed negatively changed expression of aging- and apoptosis-related genes with lower relative expression of klotho protein. These results indicated that the reason why klotho monoallelic knockout fetuses were not maintained to term was possibly due to decreased klotho expression in placentas, negatively affecting aging- and apoptosis-related genes. CONCLUSIONS: Klotho monoallelic knockout porcine fetal fibroblasts were successfully established. However, pigs carrying klotho monoallelic knockout fetuses failed to maintain full-term pregnancy and a decrease in klotho expression in placenta likely leads to pregnancy loss.


Assuntos
Feto/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Envelhecimento/fisiologia , Animais , Blastocisto , Sistemas CRISPR-Cas , Linhagem Celular , Clonagem de Organismos , Feminino , Desenvolvimento Fetal , Fibroblastos/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas Klotho , Técnicas de Transferência Nuclear , Placenta , Gravidez , Suínos
5.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299380

RESUMO

Artificial activation of oocytes is an important step for successful parthenogenesis and somatic cell nuclear transfer (SCNT). Here, we investigated the initiation of DNA synthesis and in vivo development of canine PA embryos and cloned embryos produced by treatment with 1.9 mM 6-dimethylaminopurine (6-DMAP) for different lengths of time. For experiments, oocytes for parthenogenesis and SCNT oocytes were cultured for 4 min in 10 µM calcium ionophore, and then divided into 2 groups: (1) culture for 2 h in 6-DMAP (DMAP-2h group); (2) culture for 4 h in DMAP (DMAP-4h group). DNA synthesis was clearly detected in all parthenogenetic (PA) embryos and cloned embryos incorporated BrdU 4 h after activation in DMAP-2h and DMAP-4h groups. In vivo development of canine parthenogenetic fetuses was observed after embryo transfer and the implantation rates of PA embryos in DMAP-2h were 34%, which was significantly higher than those in DMAP-4h (6.5%, p < 0.05). However, in SCNT, there was no significant difference in pregnancy rate (DMAP-2h: 41.6% vs. DMAP-4h: 33.3%) and implantation rates (DMAP-2h: 4.94% vs. DMAP-4h: 3.19%) between DMAP-2h and DMAP-4h. In conclusion, the use of DMAP-2h for canine oocyte activation may be ideal for the in vivo development of PA zygotes, but it was not more effective in in vivo development of canine reconstructed SCNT oocytes. The present study demonstrated that DMAP-2h treatment on activation of canine parthenogenesis and SCNT could effectively induce the onset of DNA synthesis during the first cell cycle.


Assuntos
Adenina/análogos & derivados , Replicação do DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Adenina/farmacologia , Animais , Clonagem de Organismos/métodos , Cães , Transferência Embrionária/métodos , Feminino , Técnicas de Transferência Nuclear , Oócitos/efeitos dos fármacos , Partenogênese/efeitos dos fármacos , Gravidez
6.
J Cell Physiol ; 235(2): 1386-1404, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31338842

RESUMO

Current studies indicate that application of oviduct cells (OCs) in in vitro system create microenvironment similar to the in vivo conditions by releasing multiple growth factors which has beneficial effects on the development of cumulus-oocyte complexes and embryos. In particular, recent evidence with a coculture system indicates that there is a reciprocal relationship between canine OCs and cumulus cells and that oviductal secretions can promote changes in cellular protein/gene expression. Despite the fact that OCs respond to cumulus cells, a clear understanding of the mechanism by which the components released from OCs that play a role in modulating the biological function of cumulus cells is still elusive. Therefore, we hypothesized that exosomes derived from OCs (OC-Exo), which efficiently mediate cellular communication by transferring their molecular cargo to recipient cells, could be key modulators of the cross-talk with cumulus cells. We aimed to characterize OC-Exo and decipher their physiological effects on cumulus cells via the epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) pathway, which is one of the prerequisite pathways for cell development. Exposure of OC-Exo improved physiological cumulus cell condition including cell concentration, viability, and proliferation rate could reduce the accumulation of reactive oxygen species and the apoptotic rate. Moreover, exosomes could enhance the messenger RNA transcript and protein levels related to EGFR signaling in cumulus cells. The present study provides the first evidence that OC-Exo effectively enhance the physiological condition of cumulus cells exposed to GW4869 or Gefitinib via the EGFR/MAPK signaling pathway and this could be the primary mediators of molecular interactions among cumulus cells and shedding light on the role of exosomes in cumulus cells might permit improvement of oocyte and embryo development in vitro.


Assuntos
Células do Cúmulo/metabolismo , Receptores ErbB/metabolismo , Exossomos/metabolismo , Tubas Uterinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Comunicação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Cães , Tubas Uterinas/citologia , Feminino
7.
Reproduction ; 160(4): 613-625, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32698140

RESUMO

Oviduct cells produce a favorable environment for the development of gametes by generating multiple growth factors. Particularly, in canine species, immature oocytes undergo serial maturation processes in the oviduct, while the other mammals already possess matured oocytes in ovulatory follicles. However, little is known about the potential effect exhibited by the components released from canine oviduct cells (OCs) for modulating the biological function of oocytes. Recently, exosomes are regarded as promising extracellular vesicles because they represent considerable data for molecular cargo. Therefore, we first investigated the effect of canine oviductal exosomes (OC-Exo) on oocyte development via EGFR/MAPK pathway. Our results showed that OC-Exo labeled with PHK67 are successfully incorporated with cumulus cells and oocytes during IVM. Also, OC-Exo markedly increased the proportion of cumulus-oocyte complexes (COCs) exhibiting cumulus expansion as well as cumulus cell proliferation and maturation rate of oocytes (P < 0.05). Furthermore, gene expression patterns related with EGFR/MAPK pathway including EGFR, PKA, TACE/ADAM17, MAPK1/3, MAPK14, PTGS2, TNFAIP6, GDF9, and BMP15 were positively modified in COCs cultured with OC-Exo (P < 0.05). In addition, OC-Exo significantly up-regulated the protein expression levels of p-EGFR, p-MAPK1/3, GDF9 and BMP15 in COCs (P < 0.05). Consequently, the current study provides a model for understanding the roles of OC-Exo as bioactive molecules for canine oocyte maturation via EGFR/MAPK pathway, which would open a new avenue for the application of exosomes to improve assisted reproductive technology in mammals, including humans.


Assuntos
Receptores ErbB/metabolismo , Exossomos/fisiologia , Sistema de Sinalização das MAP Quinases , Oócitos/citologia , Oogênese , Oviductos/fisiologia , Animais , Cães , Receptores ErbB/genética , Feminino , Oócitos/metabolismo , Transdução de Sinais
8.
J Cell Physiol ; 234(4): 4030-4043, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30252133

RESUMO

It has become increasingly recognized that coculture has a beneficial effect on the in vitro maturation (IVM) of oocytes and embryo development in many species. However, these effects of coculture on IVM have been documented only for their positive conditioning roles without any evidence on the precise mechanisms underlying the action of coculture systems on the development of cumulus oocyte complexes (COCs). It has been suggested that the epidermal growth factor receptor (EGFR) signaling pathway is important for development of COCs, mediated by several epidermal growth factor (EGF)-like proteins with downstream mitogen-activated protein kinase 1/3 signaling. Therefore, we hypothesized that canine oviduct cells (OCs) in a coculture system, which shows improvement of oocyte quality in several species, are associated with EGFR signaling by exposure to progesterone (P4; imitating its production before ovulation and its continuous increase while oocytes reside in the oviduct to complete maturation in dogs). We designed three experimental groups: control, OCs coculture exposed to P4, and OCs coculture without exposure to P4. The result showed that the OCs coculture exposed to P4 strongly expressed EGF-like proteins and significantly improved COCs and subsequent embryo development. Furthermore, the expression of EGFR-related genes in cumulus cells and GDF9 and BMP15 in oocytes was upregulated in the P4-treated group. This study provides the first evidence that OCs exposed to P4 can induce strong expression of EGF-like proteins, and OCs effectively mediate improved porcine COCs development and subsequent embryo development by altering EGFR signaling related mRNA expression.


Assuntos
Blastocisto/fisiologia , Comunicação Celular , Células do Cúmulo/metabolismo , Família de Proteínas EGF/metabolismo , Receptores ErbB/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Oviductos/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Cães , Família de Proteínas EGF/genética , Receptores ErbB/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ligantes , Oviductos/citologia , Oviductos/efeitos dos fármacos , Partenogênese , Progesterona/farmacologia , Transdução de Sinais , Sus scrofa
9.
Mol Reprod Dev ; 86(8): 1013-1022, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31166644

RESUMO

Aberrant epigenetic reprogramming is known to be a major cause of inefficient somatic cell nuclear transfer (SCNT) in pigs, and use of epigenetic modification agents, such as DNA methyltransferase inhibitors (DNMTis), is a promising approach for enhancing SCNT efficacy. Here, we attempted to find the optimal condition of zebularine (Zb), a DNMTi, treatment on porcine SCNT embryos during in vitro culture (IVC). As results, treatment with 5 nM Zb for 24 hr showed the highest rate of embryo development to blastocyst compared to other groups (p < .05). Also, the relative intensities of global DNA methylation levels of anti-5-methylcytosine in pseudo-pronuclear (PNC), 2-cell and 4-cell stages were significantly lower in the Zb-treated group (p < .05), however, changes in methylation levels of centromeric satellite repeat were noted only in PNC and blastocyst stages. In addition, significant positive alterations in the relative expression of genes related to pluripotency (OCT4 and SOX2), histone acetylation (HAT1, HDAC1, HDAC2, and HDAC3) and DNA methylation (DNMT1 and DNMT3a) were observed compared to the control (p < .05). In conclusion, we found that Zb could modify DNA methylation levels in the early stages of porcine SCNT embryos and promote their developmental competence.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Clonagem de Organismos , Citidina/análogos & derivados , Metilases de Modificação do DNA/antagonistas & inibidores , Embrião de Mamíferos/embriologia , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Animais , Citidina/farmacologia , Embrião de Mamíferos/citologia , Suínos
10.
Transgenic Res ; 28(1): 91-102, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30552552

RESUMO

Herein, we successfully generated transgenic pigs expressing both soluble human tumor necrosis factor receptor I IgG1-Fc (shTNFRI-Fc) and human hemagglutinin (HA)-tagged-human heme oxygenase-1 (hHO-1) without Gal epitope. Healthy cloned pigs were produced by somatic cell nuclear transfer (SCNT) using the genetically modified cells. The genetic disruption of the GGTA1 genes and absence of expression of BS-IB4 lectin in tail-derived fibroblast of the SCNT-generated piglets were successfully confirmed. The expression of shTNFRI-Fc and HAhHO-1 was fully identified with protective effect against oxidative stress and apoptosis stimulation. Antibody-mediated complement-dependent cytotoxicity assay for examining the immuno-reactivity of transgenically derived pig cells showed that pigs lacking GGTA1 with the expression of double genes reduce the humoral barrier to xenotransplantation, more than pigs simply expressing double genes and the wild type. Through this approach, rapid production of a pig strain deficient in various genes may be expected to be applicable for xenotransplantation research without extensive breeding protocols.


Assuntos
Animais Geneticamente Modificados/genética , Galactosiltransferases/genética , Heme Oxigenase-1/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Animais , Apoptose/genética , Epitopos/genética , Epitopos/imunologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Heme Oxigenase-1/imunologia , Humanos , Técnicas de Transferência Nuclear , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Suínos , Transplante Heterólogo
11.
J Reprod Dev ; 65(3): 259-265, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30905887

RESUMO

This study was carried out to examine the effects of manganese (Mn) on the developmental competence of porcine oocytes during in vitro maturation (IVM) after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Upon treatment of porcine oocytes with different concentrations (0, 3, 6, and 12 ng/ml) of Mn during IVM, PA was performed to determine the optimum concentration. Following PA, the rate of blastocyst formation was higher significantly in treated porcine oocytes at 6 ng/ml of Mn than in other groups (P < 0.05). However, there was no substantial difference in the cleavage rate and total blastocyst cell numbers among all groups. SCNT was performed using the optimal concentration of Mn from PA, which showed an improved blastocyst formation rate in treated oocytes compared to that in control group (P < 0.05). However, the cleavage rate and total cell numbers per blastocyst were not different between the control and the Mn treated groups after SCNT. Additionally, oocyte nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels were assessed. There was no significant difference observed in nuclear maturation among all the groups. However, enhanced intracellular GSH levels while lower levels of ROS were seen in the Mn treated group compared to the control group (P < 0.05). Thus, these results indicate that Mn supplementation can improve the developmental competence of porcine PA and SCNT embryos by increasing GSH and decreasing ROS levels.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Manganês/farmacologia , Técnicas de Transferência Nuclear/veterinária , Oócitos/citologia , Animais , Antioxidantes/metabolismo , Blastocisto/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Técnicas de Cultura Embrionária/veterinária , Feminino , Glutationa/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Oogênese , Espécies Reativas de Oxigênio/metabolismo , Suínos
12.
J Reprod Dev ; 65(2): 103-112, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30587665

RESUMO

Recently, the modification of the epigenetic status of somatic cell nuclear transfer (SCNT) embryos by treatment with histone deacetylase inhibitors (HDACis) has made it possible to alter epigenetic traits and improve the developmental competence of these embryos. In the current study, we examined the effects of an HDACi, quisinostat (JNJ), on the in vitro development of porcine cloned embryos and their epigenetic nuclear reprogramming status. SCNT embryos were cultured under various conditions, and we found that treatment with 100 nM JNJ for 24 h post activation could improve blastocyst formation rates compared to the control (P < 0.05). Therefore, this was chosen as the optimal condition and used for further investigations. To explore the effects of JNJ on the nuclear reprogramming of early stage embryos and how it improved cloning efficiency, immunofluorescence staining and quantitative real-time PCR were performed. From the pseudo-pronuclear to 2-cell stages, the levels of acetylation of histone 3 at lysine 9 (AcH3K9) and acetylation of histone 4 at lysine 12 (AcH4K12) increased, and global DNA methylation levels revealed by anti-5-methylcytosine (5-mC) antibody staining were decreased in the JNJ-treated group compared to the control (P < 0.05). However, JNJ treatment failed to alter AcH3K9, AcH4K12, or 5-mC levels at the 4-cell embryo stage. Moreover, JNJ treatment significantly upregulated the expression of the development-related genes OCT4, SOX2, and NANOG, and reduced the expression of genes related to DNA methylation (DNMT1, DNMT3a, and DNMT3b) and histone acetylation (HDAC1, HDAC2, and HDAC3). Together, these results suggest that treatment of SCNT embryos with JNJ could promote their developmental competence by altering epigenetic nuclear reprogramming events.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Animais , Células Cultivadas , Reprogramação Celular/genética , Clonagem de Organismos/veterinária , Metilação de DNA/efeitos dos fármacos , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Feminino , Histonas/metabolismo , Masculino , Técnicas de Transferência Nuclear/veterinária , Suínos
13.
J Cell Physiol ; 233(6): 5023-5033, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29215733

RESUMO

The beneficial effects of resveratrol on in vitro maturation (IVM) have been explained mainly by indirect antioxidant effects and limited information is available on the underlying mechanism by which resveratrol acts directly on porcine cumulus oocyte complexes (COCs). Recently, several studies reported that sonic hedgehog (SHH) signaling mediates resveratrol to exert its biological activities. Furthermore, SHH is an important signaling molecule for follicle development, oocyte maturation, and embryo development. Therefore, to elucidate the relationship between resveratrol and SHH signaling, we designed three groups: (i) control; (ii) resveratrol; and (iii) resveratrol with cyclopamine (SHH signaling inhibitor). We evaluated the effects of these agents on cumulus expansion, oocyte maturation, embryo development after parthenogenetic activation, expression levels of mRNAs in cumulus cells, oocytes and blastocysts, and protein expression in COCs. Resveratrol significantly increased the proportion of COCs exhibiting complete cumulus expansion (degree 4), oocyte nuclear maturation, cleavage and blastocyst formation rates and total cell numbers, which were blocked in the presence of cyclopamine. At the same time, a significant increase in the expression levels of mRNAs related to cumulus expansion, oocyte maturation and SHH signaling-related mRNAs and proteins from the resveratrol treatment group was also inhibited by simultaneous addition of cyclopamine. In conclusion, our results indicate that SHH signaling mediates resveratrol to improve porcine cumulus expansion, oocyte maturation, and subsequent embryo development.


Assuntos
Blastocisto/efeitos dos fármacos , Células do Cúmulo/efeitos dos fármacos , Fármacos para a Fertilidade Feminina/farmacologia , Proteínas Hedgehog/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Blastocisto/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células do Cúmulo/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sus scrofa
14.
J Cell Physiol ; 233(9): 6984-6995, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29345310

RESUMO

The use of supplements, such as porcine follicular fluid (pFF), fetal bovine serum and human serum albumin are widely used during in vitro maturation (IVM) in different species but these supplements contain undefined components that cause technical difficulties in standardization and influence the efficiency of IVM. Knockout serum replacement (KSR) is a synthetic protein source, without any undefined growth factors or differentiation-promoting factors. Therefore, it is feasible to use KSR as a defined component for avoiding effects of unknown molecules in an IVM system. In this study, the rates of oocyte maturation and blastocyst formation after parthenogenetic activation (PA), somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF) were significantly higher in the 5% KSR supplemented group than in the unsupplemented control group and more similar to those of the 10% pFF supplemented group. Moreover, the intensity of GDF9, BMP15, ROS, GSH, BODIPY-LD, BODIPY-FA, and BODIPY-ATP staining showed similar values between 5% KSR and 10% pFF, which have significant difference with control group. Most of the gene expression related to lipid metabolism with both supplements exhibited similar patterns. In conclusion, 5% KSR upregulated lipid metabolism and thereby provides an essential energy source to sustain and improve oocyte quality and subsequent embryo development after PA, SCNT, and IVF. These indications support the idea that KSR used as a defined serum supplement for oocyte IVM might be universally used in other species.


Assuntos
Líquido Folicular/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Metabolismo dos Lipídeos , Soro/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteína Morfogenética Óssea 15/metabolismo , Compostos de Boro/metabolismo , Proliferação de Células , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Fluorescência , Regulação da Expressão Gênica , Glutationa/metabolismo , Fator 9 de Diferenciação de Crescimento/metabolismo , Metabolismo dos Lipídeos/genética , Técnicas de Transferência Nuclear , Oócitos/citologia , Oócitos/metabolismo , Partenogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos
15.
Mol Reprod Dev ; 85(4): 336-347, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29442425

RESUMO

Human endothelial progenitor cells (EPCs) have been applied to regenerative medicine for their roles in angiogenesis as well as neovascularization, and these angiogenetic functions have beneficial effects on maturation of ovarian follicles. However, little information is available on whether EPCs on culture systems affect oocyte maturation and subsequent embryo development. Therefore, the objective of this study was to investigate the effect of EPC co-culture on porcine oocytes during in vitro maturation (IVM) and subsequent embryo development, and to examine gene expression in cumulus cells, oocytes and blastocysts. The effect of co-culture using EPC on porcine oocyte IVM was investigated. Oocytes were activated using electrical stimulation and embryo developmental competence was estimated. The expression of the genes related to cumulus expansion, oocyte maturation, embryo development, and apoptosis were analyzed. In result, there was a significantly increased maturation rate in EPC group compared with control (p < 0.05). Also, oocytes co-cultured with EPCs exhibited significantly improved blastocyst formation rates (p < 0.05). The expression of mRNAs associated with cumulus expansion and apoptosis in cumulus cells was significantly up-regulated in EPC group. Also, markedly increased levels of GDF9, BMP15, and BCL2 were observed in oocytes from the EPC group. Blastocysts in the co-culture group showed significantly higher SOX2, OCT4, and NANOG levels. In conclusion, co-culturing porcine oocytes with EPCs improves their maturation by regulating genes involved in cumulus cell expansion, oocyte maturation, and apoptosis. Moreover, EPC co-culture during IVM enhanced embryo development as shown by increased blastocyst formation rate and pluripotency-related gene expression.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário , Células Progenitoras Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/metabolismo , Animais , Blastocisto/citologia , Técnicas de Cocultura , Células Progenitoras Endoteliais/citologia , Humanos , Técnicas de Maturação in Vitro de Oócitos , Oócitos/citologia , Suínos
16.
Xenotransplantation ; 25(2): e12378, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29322561

RESUMO

BACKGROUND: Islet encapsulation techniques have shown limited success in maintaining islet survival and function because encapsulation decreases oxygen supply. In this study, an oxygen-generating scaffold was fabricated to prevent hypoxic cell damage and improve the viability and insulin secretion of islets. METHODS: We fabricated an oxygen-generating scaffold by mixing calcium peroxide (CaO2 ) with polydimethylsiloxane (PDMS). We evaluated the effects of the oxygen-generating PDMS + CaO2 scaffold on viability, caspase-3 and caspase-7 activity, oxygen consumption rate (OCR), glucose-stimulated insulin secretion (GSIS), hypoxic cell marker expression, and reactive oxygen species (ROS) levels in porcine neonatal pancreatic cell clusters (NPCCs). We also fabricated a microfluidic device that allowed measuring the effects of the oxygen-generating scaffold on viability. RESULTS: Oxygen generation by the PDMS + CaO2 scaffold was sustained for more than 24 hours in vitro. NPCCs encapsulated in PDMS + CaO2 showed higher viability than NPCCs in PDMS scaffolds and control NPCCs grown without a scaffold. PDMS + CaO2 -encapsulated NPCCs showed lower caspase-3 and caspase-7 activity, hypoxic cell expression, and ROS levels, and higher OCR and GSIS than those in PDMS or control cells. Using the microfluidic device, we observed that the viability of PDMS + CaO2 -encapsulated NPCCs was higher than that of PDMS-encapsulated NPCCs. CONCLUSIONS: NPCCs in PDMS + CaO2 scaffolds show higher viability and insulin secretion than do NPCCs in PDMS scaffolds and control cells. Therefore, this oxygen-generating scaffold has potential for application in future islet transplantation studies.


Assuntos
Sobrevivência Celular/fisiologia , Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Diabetes Mellitus Experimental , Secreção de Insulina , Transplante das Ilhotas Pancreáticas/métodos , Pâncreas/metabolismo , Suínos , Transplante Heterólogo/métodos
17.
J Reprod Dev ; 64(3): 277-282, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29695650

RESUMO

This study was conducted to investigate whether the treatment of dog to pig interspecies somatic cell nuclear transfer (iSCNT) embryos with a histone deacetylase inhibitor, to improve nuclear reprogramming, can be applied to dog SCNT embryos. The dog to pig iSCNT embryos were cultured in fresh porcine zygote medium-5 (PZM-5) with 0, 1, or 10 µM suberoylanilide hydroxamic acid (SAHA) for 6 h, then transferred to PZM-5 without SAHA. Although there were no significant differences in cleavage rates, the rates of 5-8-cell stage embryo development were significantly higher in the 10 µM group (19.5 ± 0.8%) compared to the 0 µM groups (13.4 ± 0.8%). Acetylation of H3K9 was also significantly higher in embryos beyond the 4-cell stage in the 10 µM group compared to the 0 or 1 µM groups. Treatment with 10 µM SAHA for 6 h was chosen for application to dog SCNT. Dog cloned embryos with 0 or 10 µM SAHA were transferred to recipients. However, there were no significant differences in pregnancy and delivery rates between the two groups. Therefore, it can be concluded that although porcine oocytes support nuclear reprogramming of dog fibroblasts, treatment with a histone deacetylase inhibitor that supports nuclear reprogramming in dog to pig iSCNT embryos was not sufficient for reprogramming in dog SCNT embryos.


Assuntos
Clonagem de Organismos/veterinária , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Animais , Reprogramação Celular/efeitos dos fármacos , Clonagem de Organismos/métodos , Cães , Técnicas de Cultura Embrionária/métodos , Suínos , Vorinostat
18.
Reprod Domest Anim ; 53 Suppl 3: 133-138, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30474338

RESUMO

Since the generation of world's first cloned dog, Snuppy, in 2005, somatic cell nuclear transfer (SCNT) in dogs has been widely applied for producing several kinds of dogs with specific objectives. Previous studies have demonstrated that cloned dogs show normal characteristics in growth, blood parameters and behavioural aspect. Also, canine SCNT technique has been applied to propagate working dogs with excellent abilities in fields such as assistance of disabled people, drugs detection and rescue activity. Because dogs have similar habituation properties and share many characteristics including anatomic and physiological aspects with humans, they are also primary candidates for human disease models. Recently, transgenic dogs that express red fluorescent protein gene constitutively and green fluorescent protein gene conditionally have been generated. In addition, transgenic dogs with an overexpression of peroxisome proliferator-activated receptor-alpha in specific muscles were generated to enhance physical performance. In 2017, Snuppy was recloned with markedly increased pregnancy and delivery rates compared to the statistics from when Snuppy was first cloned. Such striking improvements in the cloning of dogs using SCNT procedures suggest that dog cloning could be applied in many fields of biomedical science for human diseases research, and the application of cloning is no longer science fiction.


Assuntos
Clonagem de Organismos/veterinária , Cães , Animais , Animais Geneticamente Modificados , Técnicas de Transferência Nuclear/veterinária
19.
Int J Mol Sci ; 19(6)2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861447

RESUMO

Melatonin is a multifunctional molecule with numerous biological activities. The fact that melatonin modulates the functions of porcine granulosa cells via the MT2 receptor suggests the possibility of MT2 receptor-mediation for melatonin to promote cumulus expansion of porcine cumulus-oocyte complexes (COCs). Therefore, we investigated the presence of MT2 in porcine COCs, and the effects of melatonin with or without selective MT2 antagonists (luzindole and 4-P-PDOT) on this process; COCs underwent in vitro maturation culturing with six different conditions (control, melatonin, luzindole, 4-P-PDOT, melatonin + luzindole or melatonin + 4-P-PDOT). Cumulus expansion, oocyte nuclear maturation, and subsequent embryo development after parthenogenetic activation (PA) were evaluated. In experiment 1, MT2 was expressed in both oocytes and cumulus cells. In experiment 2, melatonin significantly increased the proportion of complete cumulus expansion (degree 4), which was inhibited by simultaneous addition of either luzindole or 4-P-PDOT. A similar pattern was observed in the expression of genes related to cumulus expansion, apoptosis, and MT2. In experiment 3, no significant difference was observed in immature, degenerate, and MII oocyte rates among the groups. In experiment 4, melatonin significantly increased blastocyst formation rates and total blastocyst cell numbers after PA, but these effects were abolished when either luzindole or 4-P-PDOT was added concomitantly. In conclusion, our results indicate that the MT2 receptor mediated the stimulatory effects of melatonin on porcine cumulus expansion and subsequent embryo development.


Assuntos
Células do Cúmulo/metabolismo , Melatonina/metabolismo , Oogênese , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais , Animais , Células do Cúmulo/fisiologia , Feminino , Sus scrofa/metabolismo , Sus scrofa/fisiologia
20.
Cell Physiol Biochem ; 41(3): 1255-1266, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28268229

RESUMO

BACKGROUND/AIMS: Hypoacetylation caused by aberrant epigenetic nuclear reprogramming results in low efficiency of mammalian somatic cell nuclear transfer (SCNT). Many epigenetic remodeling drugs have been used in attempts to improve in vitro development of porcine SCNT embryos. In this study, we examined the effects of LAQ824, a structurally novel histone acetylase inhibitor, on the nuclear reprogramming and in vitro development of porcine SCNT embryos. METHODS: LAQ824 treatment was supplemented during the culture of SCNT embryos. The reprogramming levels were measured by immunofluorescence and quantified by image J software. Relative expression levels of 18 genes were analyzed by quantitative real-time PCR. RESULTS: 100 nM LAQ824 treatment of post-activation SCNT embryos for 24 h significantly improved the subsequent blastocyst formation rate. The LAQ824 treatment enhanced histone 3 lysine 9 (H3K9) levels, histone 4 lysine 12 (H4K12) levels, and reduced global DNA methylation levels as well as anti-5-methylcytosine (5-mC) at the pseudo-pronuclear and 2-cell stages. Furthermore, LAQ824 treatment positively regulated the mRNA expression of genes for histone acetylation (HAT1, HDAC1, 2, 3, and 6), DNA methylation (DNMT1, 3a and 3b), development (Pou5f1, Nanog, Sox2, and GLUT1) and apoptosis (Bax, Bcl2, Caspase 3 and Bak) in blastocysts. CONCLUSION: Optimum exposure (100 nM for 24 h) to LAQ824 post-activation improved the in vitro development of porcine SCNT embryos by enhancing levels of H3K9 and H4K12, reducing 5-mC, and regulating gene expression.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histonas/genética , Ácidos Hidroxâmicos/farmacologia , Técnicas de Transferência Nuclear , 5-Metilcitosina/metabolismo , Acetilação/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Metilação de DNA/efeitos dos fármacos , Embrião de Mamíferos , Expressão Gênica , Histonas/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA