Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 173(5): 1165-1178.e20, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29706548

RESUMO

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Genoma , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA , Humanos , Camundongos , Mutagênese , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Coesinas
3.
Nature ; 566(7745): 558-562, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30778195

RESUMO

The genomes of multicellular organisms are extensively folded into 3D chromosome territories within the nucleus1. Advanced 3D genome-mapping methods that combine proximity ligation and high-throughput sequencing (such as chromosome conformation capture, Hi-C)2, and chromatin immunoprecipitation techniques (such as chromatin interaction analysis by paired-end tag sequencing, ChIA-PET)3, have revealed topologically associating domains4 with frequent chromatin contacts, and have identified chromatin loops mediated by specific protein factors for insulation and regulation of transcription5-7. However, these methods rely on pairwise proximity ligation and reflect population-level views, and thus cannot reveal the detailed nature of chromatin interactions. Although single-cell Hi-C8 potentially overcomes this issue, this method may be limited by the sparsity of data that is inherent to current single-cell assays. Recent advances in microfluidics have opened opportunities for droplet-based genomic analysis9 but this approach has not yet been adapted for chromatin interaction analysis. Here we describe a strategy for multiplex chromatin-interaction analysis via droplet-based and barcode-linked sequencing, which we name ChIA-Drop. We demonstrate the robustness of ChIA-Drop in capturing complex chromatin interactions with single-molecule precision, which has not been possible using methods based on population-level pairwise contacts. By applying ChIA-Drop to Drosophila cells, we show that chromatin topological structures predominantly consist of multiplex chromatin interactions with high heterogeneity; ChIA-Drop also reveals promoter-centred multivalent interactions, which provide topological insights into transcription.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Microfluídica/métodos , Análise de Sequência de DNA/métodos , Imagem Individual de Molécula/métodos , Imagem Individual de Molécula/normas , Animais , Sítios de Ligação/genética , Linhagem Celular , Cromatina/química , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Microfluídica/normas , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transcrição Gênica
4.
Adv Exp Med Biol ; 936: 73-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27739043

RESUMO

The cancer cells obtain their invasion potential not only by genetic mutations, but also by changing their cellular biophysical and biomechanical features and adapting to the surrounding microenvironments. The extracellular matrix, as a crucial component of the tumor microenvironment, provides the mechanical support for the tissue, mediates the cell-microenvironment interactions, and plays a key role in cancer cell invasion. The biomechanics of the extracellular matrix, particularly collagen, have been extensively studied in the biomechanics community. Cell migration has also enjoyed much attention from both the experimental and modeling efforts. However, the detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, has been unclear. This chapter reviews the recent advances in the studies of ECM biomechanics, cell migration, and cell-ECM interactions in the context of cancer invasion.


Assuntos
Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Mecanotransdução Celular , Modelos Estatísticos , Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animais , Fenômenos Biomecânicos , Adesão Celular , Comunicação Celular , Movimento Celular , Colágeno/metabolismo , Matriz Extracelular/patologia , Matriz Extracelular/ultraestrutura , Adesões Focais/patologia , Adesões Focais/ultraestrutura , Humanos , Camundongos , Invasividade Neoplásica , Neoplasias/patologia , Neoplasias/ultraestrutura , Células Neoplásicas Circulantes/patologia , Microambiente Tumoral
5.
Biophys J ; 106(1): 310-20, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24411263

RESUMO

Virus capsid assembly has been widely studied as a biophysical system, both for its biological and medical significance and as an important model for complex self-assembly processes. No current technology can monitor assembly in detail and what information we have on assembly kinetics comes exclusively from in vitro studies. There are many differences between the intracellular environment and that of an in vitro assembly assay, however, that might be expected to alter assembly pathways. Here, we explore one specific feature characteristic of the intracellular environment and known to have large effects on macromolecular assembly processes: molecular crowding. We combine prior particle simulation methods for estimating crowding effects with coarse-grained stochastic models of capsid assembly, using the crowding models to adjust kinetics of capsid simulations to examine possible effects of crowding on assembly pathways. Simulations suggest a striking difference depending on whether or not a system uses nucleation-limited assembly, with crowding tending to promote off-pathway growth in a nonnucleation-limited model but often enhancing assembly efficiency at high crowding levels even while impeding it at lower crowding levels in a nucleation-limited model. These models may help us understand how complicated assembly systems may have evolved to function with high efficiency and fidelity in the densely crowded environment of the cell.


Assuntos
Proteínas do Capsídeo/metabolismo , Modelos Biológicos , Montagem de Vírus , Proteínas do Capsídeo/química , Cinética
6.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585764

RESUMO

Cohesin is required for chromatin loop formation. However, its precise role in regulating gene transcription remains largely unknown. We investigated the relationship between cohesin and RNA Polymerase II (RNAPII) using single-molecule mapping and live-cell imaging methods in human cells. Cohesin-mediated transcriptional loops were highly correlated with those of RNAPII and followed the direction of gene transcription. Depleting RAD21, a subunit of cohesin, resulted in the loss of long-range (>100 kb) loops between distal (super-)enhancers and promoters of cell-type-specific genes. By contrast, the short-range (<50 kb) loops were insensitive to RAD21 depletion and connected genes that are mostly housekeeping. This result explains why only a small fraction of genes are affected by the loss of long-range chromatin interactions due to cohesin depletion. Remarkably, RAD21 depletion appeared to up-regulate genes located in early initiation zones (EIZ) of DNA replication, and the EIZ signals were amplified drastically without RAD21. Our results revealed new mechanistic insights of cohesin's multifaceted roles in establishing transcriptional loops, preserving long-range chromatin interactions for cell-specific genes, and maintaining timely order of DNA replication.

7.
Med Rev (Berl) ; 2(2): 125-139, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37724245

RESUMO

The tumor ecosystem with heterogeneous cellular compositions and the tumor microenvironment has increasingly become the focus of cancer research in recent years. The extracellular matrix (ECM), the major component of the tumor microenvironment, and its interactions with the tumor cells and stromal cells have also enjoyed tremendously increased attention. Like the other components of the tumor microenvironment, the ECM in solid tumors differs significantly from that in normal organs and tissues. We review recent studies of the complex roles the tumor ECM plays in cancer progression, from tumor initiation, growth to angiogenesis and invasion. We highlight that the biomolecular, biophysical, and mechanochemical interactions between the ECM and cells not only regulate the steps of cancer progression, but also affect the efficacy of systemic cancer treatment. We further discuss the strategies to target and modify the tumor ECM to improve cancer therapy.

8.
Sci Rep ; 12(1): 8582, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595799

RESUMO

The three-dimensional (3D) genome structure plays a fundamental role in gene regulation and cellular functions. Recent studies in 3D genomics inferred the very basic functional chromatin folding structures known as chromatin loops, the long-range chromatin interactions that are mediated by protein factors and dynamically extruded by cohesin. We combined the use of FISH staining of a very short (33 kb) chromatin fragment, interferometric photoactivated localization microscopy (iPALM), and traveling salesman problem-based heuristic loop reconstruction algorithm from an image of the one of the strongest CTCF-mediated chromatin loops in human lymphoblastoid cells. In total, we have generated thirteen good quality images of the target chromatin region with 2-22 nm oligo probe localization precision. We visualized the shape of the single chromatin loops with unprecedented genomic resolution which allowed us to study the structural heterogeneity of chromatin looping. We were able to compare the physical distance maps from all reconstructed image-driven computational models with contact frequencies observed by ChIA-PET and Hi-C genomic-driven methods to examine the concordance between single cell imaging and population based genomic data.


Assuntos
Cromatina , Microscopia , Sequenciamento de Cromatina por Imunoprecipitação , Cromossomos , Genoma , Humanos
9.
Curr Protoc ; 1(8): e174, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34351700

RESUMO

Chromatin Interaction Analysis Using Paired-End Tag Sequencing (ChIA-PET) is an established method to map protein-mediated chromatin interactions. A limitation, however, is that it requires a hundred million cells per experiment, which hampers its broad application in biomedical research, particularly in studies in which it is impractical to obtain a large number of cells from rare samples. To reduce the required input cell number while retaining high data quality, we developed an in situ ChIA-PET protocol, which requires as few as 1 million cells. Here, we describe detailed step-by-step procedures for performing in situ ChIA-PET from cultured cells, including both an experimental protocol for sample preparation and data generation and a computational protocol for data processing and visualization using the ChIA-PIPE pipeline. As the protocol significantly simplifies the experimental procedure, reduces ligation noise, and decreases the required input of cells compared to previous versions of ChIA-PET protocols, it can be applied to generate high-resolution chromatin contact maps mediated by various protein factors for a wide range of human and mouse primary cells. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample preparation and data generation Support Protocol: Bridge linker preparation Basic Protocol 2: Data processing and visualization.


Assuntos
Cromatina , Técnicas Genéticas , Animais , Linhagem Celular , Interpretação Estatística de Dados , Humanos , Camundongos , Análise de Sequência de DNA
10.
Genome Biol ; 21(1): 110, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393309

RESUMO

BACKGROUND: Acute promyeloid leukemia (APL) is characterized by the oncogenic fusion protein PML-RARα, a major etiological agent in APL. However, the molecular mechanisms underlying the role of PML-RARα in leukemogenesis remain largely unknown. RESULTS: Using an inducible system, we comprehensively analyze the 3D genome organization in myeloid cells and its reorganization after PML-RARα induction and perform additional analyses in patient-derived APL cells with native PML-RARα. We discover that PML-RARα mediates extensive chromatin interactions genome-wide. Globally, it redefines the chromatin topology of the myeloid genome toward a more condensed configuration in APL cells; locally, it intrudes RNAPII-associated interaction domains, interrupts myeloid-specific transcription factors binding at enhancers and super-enhancers, and leads to transcriptional repression of genes critical for myeloid differentiation and maturation. CONCLUSIONS: Our results not only provide novel topological insights for the roles of PML-RARα in transforming myeloid cells into leukemia cells, but further uncover a topological framework of a molecular mechanism for oncogenic fusion proteins in cancers.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Leucemia Promielocítica Aguda/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Linhagem Celular Tumoral , Humanos , Leucemia Promielocítica Aguda/etiologia
11.
Sci Adv ; 6(28): eaay2078, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832596

RESUMO

ChIA-PET (chromatin interaction analysis with paired-end tags) enables genome-wide discovery of chromatin interactions involving specific protein factors, with base pair resolution. Interpretation of ChIA-PET data requires a robust analytic pipeline. Here, we introduce ChIA-PIPE, a fully automated pipeline for ChIA-PET data processing, quality assessment, visualization, and analysis. ChIA-PIPE performs linker filtering, read mapping, peak calling, and loop calling and automates quality control assessment for each dataset. To enable visualization, ChIA-PIPE generates input files for two-dimensional contact map viewing with Juicebox and HiGlass and provides a new dockerized visualization tool for high-resolution, browser-based exploration of peaks and loops. To enable structural interpretation, ChIA-PIPE calls chromatin contact domains, resolves allele-specific peaks and loops, and annotates enhancer-promoter loops. ChIA-PIPE also supports the analysis of other related chromatin-mapping data types.

12.
Nat Commun ; 11(1): 2120, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358536

RESUMO

The human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy. We apply 3D-EMISH to human lymphoblastoid cells at a 1.7 Mb segment of the genome and visualize a large number of distinctive 3D chromatin folding structures in ultra-resolution. We further quantitatively characterize the reconstituted chromatin folding structures by identifying sub-domains, and uncover a high level heterogeneity of chromatin folding ultrastructures in individual nuclei, suggestive of extensive dynamic fluidity in 3D chromatin states.


Assuntos
Cromatina/metabolismo , Cromatina/ultraestrutura , Algoritmos , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , DNA/ultraestrutura , Humanos , Hibridização In Situ , Microscopia Confocal , Microscopia Eletrônica , Microscopia Eletrônica de Varredura
13.
Genome Biol ; 20(1): 251, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767038

RESUMO

The single-molecule multiplex chromatin interaction data are generated by emerging 3D genome mapping technologies such as GAM, SPRITE, and ChIA-Drop. These datasets provide insights into high-dimensional chromatin organization, yet introduce new computational challenges. Thus, we developed MIA-Sig, an algorithmic solution based on signal processing and information theory. We demonstrate its ability to de-noise the multiplex data, assess the statistical significance of chromatin complexes, and identify topological domains and frequent inter-domain contacts. On chromatin immunoprecipitation (ChIP)-enriched data, MIA-Sig can clearly distinguish the protein-associated interactions from the non-specific topological domains. Together, MIA-Sig represents a novel algorithmic framework for multiplex chromatin interaction analysis.


Assuntos
Cromatina/metabolismo , Processamento de Sinais Assistido por Computador , Software , Algoritmos , Regiões Promotoras Genéticas
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 1): 031911, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18851069

RESUMO

The environment inside a living cell is dramatically different from that found in in vitro models, presenting a problem for computational models of biochemistry that are only beginning to capture these differences. This deviation between idealized in vitro models and more realistic intracellular conditions is particularly problematic for models of molecular self-assembly, but also specifically hard to address because the large sizes and long assembly times of biological self-assembly systems force the use of highly simplified models. We have developed a prototype of a molecular self-assembly simulator based on the Green's function reaction dynamics (GFRD) model to achieve more realistic models of assembly in the crowded conditions of the cell without unduly sacrificing tractability. We tested the model on a simple representation of dimer assembly in a two-dimensional space. Our simulations verify that the model is computationally efficient, provides a realistic quantitative model of reaction kinetics in uncrowded conditions, and exhibits expected excluded volume effects under conditions of high crowding. This work confirms the effectiveness of the GFRD technique for more realistic coarse-grained modeling of self-assembly in crowded conditions and helps lay the groundwork for exploring the effects of in vivo crowding on more complex assembly systems.


Assuntos
Biofísica/métodos , Algoritmos , Animais , Bioquímica/métodos , Comunicação Celular , Movimento Celular , Fenômenos Fisiológicos Celulares , Simulação por Computador , Difusão , Humanos , Cinética , Modelos Biológicos , Modelos Estatísticos , Modelos Teóricos , Processos Estocásticos
15.
Sci Rep ; 7: 39498, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045069

RESUMO

Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Colágeno/metabolismo , Matriz Extracelular/patologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Quinases Proteína-Quinases Ativadas por AMP , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Matriz Extracelular/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Proteínas Serina-Treonina Quinases/metabolismo
17.
Mol Biol Cell ; 27(7): 1069-84, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26864623

RESUMO

LKB1 is a serine/threonine kinase and a commonly mutated gene in lung adenocarcinoma. The majority of LKB1 mutations are truncations that disrupt its kinase activity and remove its C-terminal domain (CTD). Because LKB1 inactivation drives cancer metastasis in mice and leads to aberrant cell invasion in vitro, we sought to determine how compromised LKB1 function affects lung cancer cell polarity and invasion. Using three-dimensional models, we show that LKB1 kinase activity is essential for focal adhesion kinase-mediated cell adhesion and subsequent collagen remodeling but not cell polarity. Instead, cell polarity is overseen by the kinase-independent function of its CTD and more specifically its farnesylation. This occurs through a mesenchymal-amoeboid morphological switch that signals through the Rho-GTPase RhoA. These data suggest that a combination of kinase-dependent and -independent defects by LKB1 inactivation creates a uniquely invasive cell with aberrant polarity and adhesion signaling that drives invasion into the microenvironment.


Assuntos
Adenocarcinoma/patologia , Adesão Celular , Polaridade Celular , Colágeno/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Quinase 1 de Adesão Focal , Humanos , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica , Prenilação de Proteína , Proteínas Serina-Treonina Quinases/química , Proteína rhoA de Ligação ao GTP
18.
PLoS One ; 9(11): e111896, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386649

RESUMO

Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.


Assuntos
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Modelos Biológicos , Simulação por Computador , Elasticidade , Humanos , Estresse Mecânico , Resistência à Tração
19.
PLoS One ; 7(1): e30131, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272286

RESUMO

Molecular crowding is one of the characteristic features of the intracellular environment, defined by a dense mixture of varying kinds of proteins and other molecules. Interaction with these molecules significantly alters the rates and equilibria of chemical reactions in the crowded environment. Numerous fundamental activities of a living cell are strongly influenced by the crowding effect, such as protein folding, protein assembly and disassembly, enzyme activity, and signal transduction. Quantitatively predicting how crowding will affect any particular process is, however, a very challenging problem because many physical and chemical parameters act synergistically in ways that defy easy analysis. To build a more realistic model for this problem, we extend a prior stochastic off-lattice model from two-dimensional (2D) to three-dimensional (3D) space and examine how the 3D results compare to those found in 2D. We show that both models exhibit qualitatively similar crowding effects and similar parameter dependence, particularly with respect to a set of parameters previously shown to act linearly on total reaction equilibrium. There are quantitative differences between 2D and 3D models, although with a generally gradual nonlinear interpolation as a system is extended from 2D to 3D. However, the additional freedom of movement allowed to particles as thickness of the simulation box increases can produce significant quantitative change as a system moves from 2D to 3D. Simulation results over broader parameter ranges further show that the impact of molecular crowding is highly dependent on the specific reaction system examined.


Assuntos
Algoritmos , Espaço Intracelular/química , Substâncias Macromoleculares/química , Modelos Biológicos , Modelos Químicos , Simulação por Computador , Espaço Intracelular/metabolismo , Cinética , Substâncias Macromoleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Processos Estocásticos
20.
Sci Rep ; 1: 97, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355615

RESUMO

Molecular crowding is a critical feature distinguishing intracellular environments from idealized solution-based environments and is essential to understanding numerous biochemical reactions, from protein folding to signal transduction. Many biochemical reactions are dramatically altered by crowding, yet it is extremely difficult to predict how crowding will quantitatively affect any particular reaction systems. We previously developed a novel stochastic off-lattice model to efficiently simulate binding reactions across wide parameter ranges in various crowded conditions. We now show that a polynomial regression model can incorporate several interrelated parameters influencing chemistry under crowded conditions. The unified model of binding equilibria accurately reproduces the results of particle simulations over a broad range of variation of six physical parameters that collectively yield a complicated, non-linear crowding effect. The work represents an important step toward the long-term goal of computationally tractable predictive models of reaction chemistry in the cellular environment.


Assuntos
Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA