Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(6): 2025-2032, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295356

RESUMO

Negative differential resistance (NDR), a phenomenon in which the current decreases when the applied voltage is increased, is attracting attention as a unique electrical property. Here, we propose a broad spectral photo/gate cotunable channel switching NDR (CS-NDR) device. The proposed CS-NDR device has superior linear gate-tunable NDR behavior and highly reproducible properties compared to the previously reported NDR devices, as the fundamental mechanism of the CS-NDR device is directly related to a charge transport channel switching by the linear increase of the applied drain voltage. We also experimentally demonstrate that the photoinduced NDR behavior of the CS-NDR device was derived from the grain boundaries of dinaphtho[2;3-b:2',3'-f]-thieno[3,2-b]thiophene. Furthermore, this work produces a 9 × 9 CS-NDR device array composed of 81 devices, providing the reproducibility and uniformity of the CS-NDR device. Finally, we successfully demonstrate the detection of text images with 81 CS-NDR devices using the proposed photo/gate cotunable NDR behavior.

2.
Small ; 20(9): e2306468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857588

RESUMO

Organic semiconductors have great potential to revolutionize electronics by enabling flexible and eco-friendly manufacturing of electronic devices on plastic film substrates. Recent research and development led to the creation of printed displays, radio-frequency identification tags, smart labels, and sensors based on organic electronics. Over the last 3 decades, significant progress has been made in realizing electronic devices with unprecedented features, such as wearable sensors, disposable electronics, and foldable displays, through the exploitation of desirable characteristics in organic electronics. Neverthless, the down-scalability of organic electronic devices remains a crucial consideration. To address this, efforts are extensively explored. It is of utmost importance to further develop these alternative patterning methods to overcome the downscaling challenge. This review comprehensively discusses the efforts and strategies aimed at overcoming the limitations of downscaling in organic semiconductors, with a particular focus on four main areas: 1) lithography-compatible organic semiconductors, 2) fine patterning of printing methods, 3) organic material deposition on pre-fabricated devices, and 4) vertical-channeled organic electronics. By discussing these areas, the full potential of organic semiconductors can be unlocked, and the field of flexible and sustainable electronics can be advanced.

3.
Macromol Rapid Commun ; 45(17): e2400165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924243

RESUMO

Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a conductive polymer, has gained popularity as the channel layer in organic electrochemical transistors (OECTs) due to its high conductivity and straightforward processing. However, difficulties arise in controlling its conductivity through gate voltage, presenting a challenge. To address this issue, aromatic amidine base, diazabicyclo[4.3.0]non-5-ene (DBN), is used to stabilize the doping state of the PEDOT chain through a reliable chemical de-doping process. Furthermore, the addition of the proton-penetrable material Nafion to the PEDOT:PSS channel layer induces phase separation between the substances. By utilizing a solution containing both PEDOT:PSS and Nafion as the channel layer of OECTs, the efficiency of ion movement into the channel from the electrolyte is enhanced, resulting in improved OECT performance. The inclusion of Nafion in the OECTs' channel layer modifies ion movement dynamics, allowing for the adjustment of synaptic properties such as pulse-paired facilitation, memory level, short-term plasticity, and long-term plasticity. This research aims to introduce new possibilities in the field of neuromorphic computing and contribute to biomimetic technology through the enhancement of electronic component performance.


Assuntos
Polímeros de Fluorcarboneto , Poliestirenos , Prótons , Poliestirenos/química , Polímeros de Fluorcarboneto/química , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Técnicas Eletroquímicas
4.
Annu Rev Biomed Eng ; 21: 299-323, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883212

RESUMO

Miniaturization of electronic components and advances in flexible and stretchable materials have stimulated the development of wearable health care systems that can reflect and monitor personal health status by health care professionals. New skin-mountable devices that offer seamless contact onto the human skin, even under large deformations by natural motions of the wearer, provide a route for both high-fidelity monitoring and patient-controlled therapy. This article provides an overview of several important aspects of skin-mountable devices and their applications in many medical settings and clinical practices. We comprehensively describe various transdermal sensors and therapeutic systems that are capable of detecting physical, electrophysiological, and electrochemical responses and/or providing electrical and thermal therapies and drug delivery services, and we discuss the current challenges, opportunities, and future perspectives in the field. Finally, we present ways to protect the embedded electronic components of skin-mountable devices from the environment by use of mechanically soft packaging materials.


Assuntos
Técnicas Biossensoriais/instrumentação , Engenharia Biomédica , Sistemas de Liberação de Medicamentos/instrumentação , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Monitorização Fisiológica/instrumentação , Pele/anatomia & histologia , Fenômenos Fisiológicos da Pele , Suor/química , Terapêutica/instrumentação , Estimulação Elétrica Nervosa Transcutânea/instrumentação , Adesivo Transdérmico
5.
Proc Natl Acad Sci U S A ; 113(27): 7414-9, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27313207

RESUMO

The formation of 2D polyaniline (PANI) has attracted considerable interest due to its expected electronic and optoelectronic properties. Although PANI was discovered over 150 y ago, obtaining an atomically well-defined 2D PANI framework has been a longstanding challenge. Here, we describe the synthesis of 2D PANI via the direct pyrolysis of hexaaminobenzene trihydrochloride single crystals in solid state. The 2D PANI consists of three phenyl rings sharing six nitrogen atoms, and its structural unit has the empirical formula of C3N. The topological and electronic structures of the 2D PANI were revealed by scanning tunneling microscopy and scanning tunneling spectroscopy combined with a first-principle density functional theory calculation. The electronic properties of pristine 2D PANI films (undoped) showed ambipolar behaviors with a Dirac point of -37 V and an average conductivity of 0.72 S/cm. After doping with hydrochloric acid, the conductivity jumped to 1.41 × 10(3) S/cm, which is the highest value for doped PANI reported to date. Although the structure of 2D PANI is analogous to graphene, it contains uniformly distributed nitrogen atoms for multifunctionality; hence, we anticipate that 2D PANI has strong potential, from wet chemistry to device applications, beyond linear PANI and other 2D materials.

6.
Small ; 10(18): 3700-6, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24861217

RESUMO

The maximum responsivity of a pure monolayer graphene-based photodetector is currently less than 10 mA W(-1) because of small optical absorption and short recombination lifetime. Here, a graphene hybrid photodetector functionalized with a photoactive ruthenium complex that shows an ultrahigh responsivity of ≈1 × 10(5) A W(-1) and a photoconductive gain of ≈3 × 10(6) under incident optical intensity of the order of sub-milliwatts is reported. This responsivity is two orders of magnitude higher than the precedent best performance of graphene-based photodetectors under a similar incident light intensity. Upon functionalization with a 4-nm-thick ruthenium complex, monolayer graphene-based photodetectors exhibit pronounced n-type doping effect due to electron transfer via the metal-ligand charge transfer (MLCT) from the ruthenium complex to graphene. The ultrahigh responsivity is attributed to the long lifetime and high mobility of the photoexcited charge carriers. This approach is highly promising for improving the responsivity of graphene-based photodetectors.

7.
Angew Chem Int Ed Engl ; 53(9): 2398-401, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24574032

RESUMO

Heteroatom-doping into graphitic networks has been utilized for opening the band gap of graphene. However, boron-doping into the graphitic framework is extremely limited, whereas nitrogen-doping is relatively feasible. Herein, boron/nitrogen co-doped graphene (BCN-graphene) is directly synthesized from the reaction of CCl4 , BBr3 , and N2 in the presence of potassium. The resultant BCN-graphene has boron and nitrogen contents of 2.38 and 2.66 atom %, respectively, and displays good dispersion stability in N-methyl-2-pyrrolidone, allowing for solution casting fabrication of a field-effect transistor. The device displays an on/off ratio of 10.7 with an optical band gap of 3.3 eV. Considering the scalability of the production method and the benefits of solution processability, BCN-graphene has high potential for many practical applications.

8.
ACS Appl Mater Interfaces ; 16(38): 51221-51228, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39283973

RESUMO

The development of n-type organic semiconductors (OSCs) has been lagged behind that of p-type OSCs, mainly due to the limited availability of the electron deficient π-conjugated backbones and facile electron trapping by ambient oxidants. Improving the performance of n-type OSCs through n-doping is essential for realizing p-n junction diodes and complementary circuits. Conventional vacuum deposition doping is costly and time-consuming, while solution doping risks thermal damage through necessary annealing. Therefore, the development of a simpler, more affordable n-doping method is crucial. In this study, we have developed a solution-processed n-doping method using an organic cationic dye in a low boiling point solvent that can be dried at room temperature in 1 h, which eliminates the need for annealing. The effects of different organic cationic dyes and reducing agents on the n-type OSC were evaluated. After n-doping, electron mobility and photoresponsivity in the sample increased by 5.5 and 20 times, respectively, compared to undoped samples. Furthermore, there was no significant degradation in the electron mobility of the n-doped samples under ambient conditions after 15 days. Studying n-doping with various organic cationic dyes in different OSC materials, embracing further research into their applications and mechanisms, would advance the field of organic electronics.

9.
Adv Sci (Weinh) ; 11(18): e2309221, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454740

RESUMO

For enhanced security in hardware-based security devices, it is essential to extract various independent characteristics from a single device to generate multiple keys based on specific values. Additionally, the secure destruction of authentication information is crucial for the integrity of the data. Doped amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) using poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) induce a dipole doping effect through a phase-transition process, creating physically unclonable function (PUF) devices for secure user information protection. The PUF security key, generated at VGS = 20 V in a 20 × 10 grid, demonstrates uniformity of 42% and inter-Hamming distance (inter-HD) of 49.79% in the ß-phase of PVDF-HFP. However, in the γ-phase, the uniformity drops to 22.5%, and inter-HD decreases to 35.74%, indicating potential security key destruction during the phase transition. To enhance security, a multi-factor authentication (MFA) system is integrated, utilizing five security keys extracted from various TFT parameters. The security keys from turn-on voltage (VON), VGS = 20 V, VGS = 30 V, mobility, and threshold voltage (Vth) exhibit near-ideal uniformities and inter-HDs, with the highest values of 58% and 51.68%, respectively. The dual security system, combining phase transition and MFA, establishes a robust protection mechanism for privacy-sensitive user information.

10.
ACS Appl Mater Interfaces ; 16(33): 43774-43785, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39115374

RESUMO

n-Type doping for improving the electrical characteristics and air stability of n-type organic semiconductors (OSCs) is important for realizing advanced future electronics. Herein, we report a selection method for an effective n-type dopant with an optimized structure and thickness based on anthracene cationic dyes with high miscibility induced by a molecular structure similar to that of OSCs. Among the doped OSCs evaluated, rhodamine B (RhoB)-doped OSC exhibits the highest density, a smallest roughness of 2.69 nm, a phase deviation of 0.85° according to atomic force microscopy measurements, and the highest electron mobility (µ), showing its high miscibility. Surface doping of RhoB affords the lowest contact resistance of 2.01 × 105 Ω cm compared to bulk and contact doping, resulting in an effective doping structure. The RhoB-doped OSC retains 81.63% of the original µ value of 6.13 × 10-2 cm2 V-1 s-1 after 15 days, whereas pristine OSC shows a lower µ of 2.33 × 10-2 cm2 V-1 s-1 and maintains only 4.41% of the original value after 15 days. Our findings demonstrate that this methodology is effective for the selection of a high-performance n-type dopant for OSCs toward the development of high-performance and air-stable n-type organic electronics.

11.
J Am Chem Soc ; 135(24): 8981-8, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23711048

RESUMO

The development of a versatile method for nitrogen-doping of graphitic structure is an important challenge for many applications, such as energy conversions and storages and electronic devices. Here, we report a simple but efficient method for preparing nitrogen-doped graphene nanoplatelets via wet-chemical reactions. The reaction between monoketone (C═O) in graphene oxide (GO) and monoamine-containing compound produces imine (Shiff base) functionalized GO (iGO). The reaction between α-diketone in GO and 1,2-diamine (ortho-diamine)-containing compound gives stable pyrazine ring functionalized GO (pGO). Subsequent heat-treatments of iGO and pGO result in high-quality, nitrogen-doped graphene nanoplatelets to be designated as hiGO and hpGO, respectively. Of particular interest, hpGO was found to display the n-type field-effect transistor behavior with a charge neutral point (Dirac point) located at around -16 V. Furthermore, hpGO showed hole and electron mobilities as high as 11.5 and 12.4 cm(2)V(-1)s(-1), respectively.

12.
Micromachines (Basel) ; 14(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37374716

RESUMO

Flexible electronic devices require metal interconnects to facilitate the flow of electrical signals among the device components, ensuring its proper functionality. There are multiple factors to consider when designing metal interconnects for flexible electronics, including their conductivity, flexibility, reliability, and cost. This article provides an overview of recent endeavors to create flexible electronic devices through different metal interconnect approaches, with a focus on materials and structural aspects. Additionally, the article discusses emerging flexible applications, such as e-textiles and flexible batteries, as essential considerations.

13.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890734

RESUMO

The life expectancy of humans has been significantly elevated due to advancements in medical knowledge and skills over the past few decades. Although a lot of knowledge and skills are disseminated to the general public, electronic devices that quantitatively diagnose one's own body condition still require specialized semiconductor devices which are huge and not portable. In this regard, semiconductor materials that are lightweight and have low power consumption and high performance should be developed with low cost for mass production. Organic semiconductors are one of the promising materials in biomedical applications due to their functionalities, solution-processability and excellent mechanical properties in terms of flexibility. In this review, we discuss organic semiconductor materials that are widely utilized in biomedical devices. Some advantageous and unique properties of organic semiconductors compared to inorganic semiconductors are reviewed. By critically assessing the fabrication process and device structures in organic-based biomedical devices, the potential merits and future aspects of the organic biomedical devices are pinpointed compared to inorganic devices.

14.
Polymers (Basel) ; 14(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808632

RESUMO

To increase the human lifespan, healthcare monitoring devices that diagnose diseases and check body conditions have attracted considerable interest. Commercial AgCl-based wet electrodes with the advantages of high conductivity and strong adaptability to human skin are considered the most frequently used electrode material for healthcare monitoring. However, commercial AgCl-based wet electrodes, when exposed for a long period, cause an evaporation of organic solvents, which could reduce the signal-to-noise ratio of biosignals and stimulate human skin. In this context, we demonstrate a dry electrode for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based blended polymer electrode using a combination of PEDOT:PSS, waterborne polyurethane (WPU) and ethylene glycol (EG) that could be reused for a long period of time to detect electrocardiography (ECG) and electromyography (EMG). Both ECG and EMG are reliably detected by the wireless real-time monitoring system. In particular, the proposed dry electrode detects biosignals without deterioration for over 2 weeks. Additionally, a double layer of a polyimide (PI) substrate and fluorinated polymer CYTOP induces the strong waterproof characteristics of external liquids for the proposed dry electrodes, having a low surface energy of 14.49 mN/m. In addition, the proposed electrode has excellent degradability in water; it dissolves in hot water at 60 °C.

15.
Micromachines (Basel) ; 12(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683296

RESUMO

With the advent of human-machine interaction and the Internet of Things, wearable and flexible vibration sensors have been developed to detect human voices and surrounding vibrations transmitted to humans. However, previous wearable vibration sensors have limitations in the sensing performance, such as frequency response, linearity of sensitivity, and esthetics. In this study, a transparent and flexible vibration sensor was developed by incorporating organic/inorganic hybrid materials into ultrathin membranes. The sensor exhibited a linear and high sensitivity (20 mV/g) and a flat frequency response (80-3000 Hz), which are attributed to the wheel-shaped capacitive diaphragm structure fabricated by exploiting the high processability and low stiffness of the organic material SU-8 and the high conductivity of the inorganic material ITO. The sensor also has sufficient esthetics as a wearable device because of the high transparency of SU-8 and ITO. In addition, the temperature of the post-annealing process after ITO sputtering was optimized for the high transparency and conductivity. The fabricated sensor showed significant potential for use in transparent healthcare devices to monitor the vibrations transmitted from hand-held vibration tools and in a skin-attachable vocal sensor.

16.
ACS Appl Mater Interfaces ; 13(21): 25072-25081, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34013714

RESUMO

Negative differential resistance (NDR) can be applied to various devices such as reflection amplifiers, relaxation oscillators, and neuromorphic devices. However, the development of NDR photodetectors with uniformity, stability, and reproducibility for use in practical applications is still lacking. Herein, we demonstrate highly reliable NDR photodetectors by constructing a MoS2/p-Si heterostructure. Owing to the formation of a MoS2 layer with uniform thickness by the plasma-enhanced sulfurization process, a 100% yield with high uniformity (peak-to-valley ratio = 1.195 ± 0.065) was achieved for 120 devices. Furthermore, the proposed NDR photodetectors exhibit unprecedented high cycle-to-cycle endurance, which maintains their NDR characteristics through 100 000 consecutive sweeps without operational failure. This work paves the way for the development of a reliable NDR device and reports unprecedented results of high uniformity, reproducibility, and robustness for practical applications.

17.
Biomed Eng Lett ; 11(2): 107-115, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34150347

RESUMO

Elaborate electrodes that enable adhesion to the skin surface and effectively collect vital signs are necessitated. In recent years, various electrode materials and novel structures have been developed, and they have garnered scientific attention due to their higher sensing performances compared with those of conventional electrode-based sensors. This paper provides an overview of recent advances in biomedical sensors, focusing on the development of novel electrodes. We comprehensively review the different types of electrode materials in the context of efficient biosignal detection, with respect to material composition for flexible and wearable electrodes and novel electrode structures. Finally, we discuss recent packaging technologies in biomedical applications using flexible and wearable electrodes.

18.
ACS Nano ; 15(11): 17769-17779, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34767355

RESUMO

Two-dimensional layered transition metal dichalcogenides (TMDs) have been investigated intensively as next-generation semiconducting materials. However, conventional TMD-based devices exhibit large contact resistance at the interface between the TMD and the metal electrode because of Fermi level pinning and the Schottky barrier, which results in poor charge injection. Here, we present enhanced charge transport characteristics in molybdenum diselenide (MoSe2) by means of a sequential engineering process called PESOD-2H/1T (i.e., phase transition engineering combined with surface transfer organic cationic dye doping; 2H and 1T represent the trigonal prismatic and octahedral phases, respectively). Substantial improvements are observed in PESOD-processed MoSe2 phototransistors, specifically, an approximately 40 000-fold increase in effective carrier mobility and a 100 000-fold increase in photoresponsivity, compared with the mobility and photoresponsivity of intact MoSe2 phototransistors. Moreover, the PESOD-processed MoSe2 phototransistor on a flexible substrate maintains its optoelectronic properties under tensile stress, with a bending radius of 5 mm.

19.
Adv Mater ; 33(9): e2004707, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33470474

RESUMO

Recently, studies of 2D organic layered materials with unique electronic properties have generated considerable interest in the research community. However, the development of organic materials with functional electrical transport properties is still needed. Here, a 2D fused aromatic network (FAN) structure with a C5 N basal plane stoichiometry is designed and synthesized, and thin films are cast from C5 N solution onto silicon dioxide substrates. Then field-effect transistors are fabricated using C5 N thin flakes as the active layer in a bottom-gate top-contact configuration to characterize their electrical properties. The C5 N thin flakes, isolated by polydimethylsiloxane stamping, exhibit ambipolar charge transport and extraordinarily high electron (996 cm2 V-1 s-1 ) and hole (501 cm2 V-1 s-1 ) mobilities, surpassing the performance of most pristine organic materials without doping. These results demonstrate their vast potential for applications in thin-film optoelectronic devices.

20.
Adv Mater ; 32(46): e2004456, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33043514

RESUMO

The vision system of arthropods consists of a dense array of individual photodetecting elements across a curvilinear surface. This compound-eye architecture could be a useful model for optoelectronic sensing devices that require a large field of view and high sensitivity to motion. Strategies that aim to mimic the compound-eye architecture involve integrating photodetector pixels with a curved microlens, but their fabrication on a curvilinear surface is challenged by the use of standard microfabrication processes that are traditionally designed for planar, rigid substrates (e.g., Si wafers). Here, a fractal web design of a hemispherical photodetector array that contains an organic-dye-sensitized graphene hybrid composite is reported to serve as an effective photoactive component with enhanced light-absorbing capabilities. The device is first fabricated on a planar Si wafer at the microscale and then transferred to transparent hemispherical domes with different curvatures in a deterministic manner. The unique structural property of the fractal web design provides protection of the device from damage by effectively tolerating various external loads. Comprehensive experimental and computational studies reveal the essential design features and optoelectronic properties of the device, followed by the evaluation of its utility in the measurement of both the direction and intensity of incident light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA