Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(49): 17186-17194, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36399654

RESUMO

A high-throughput, accurate screening is crucial for the prevention and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current methods, which involve sampling from the nasopharyngeal (NP) area by medical staffs, constitute a fundamental bottleneck in expanding the testing capacity. To meet the scales required for population-level surveillance, self-collectable specimens can be used; however, its low viral load has hindered its clinical adoption. Here, we describe a magnetic nanoparticle functionalized with synthetic apolipoprotein H (ApoH) peptides to capture, concentrate, and purify viruses. The ApoH assay demonstrates a viral enrichment efficiency of >90% for both SARS-CoV-2 and its variants, leading to an order of magnitude improvement in analytical sensitivity. For validation, we apply the assay to a total of 84 clinical specimens including nasal, oral, and mouth gargles obtained from COVID-19 patients. As a result, a 100% positivity rate is achieved from the patient-collected nasal and gargle samples, which exceeds that of the traditional NP swab method. The simple 12 min pre-enrichment assay enabling the use of self-collectable samples will be a practical solution to overcome the overwhelming diagnostic capacity. Furthermore, the methodology can easily be built on various clinical protocols, allowing its broad applicability to various disease diagnoses.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , beta 2-Glicoproteína I , Teste para COVID-19 , Nasofaringe , Manejo de Espécimes/métodos , Peptídeos
2.
Sci Rep ; 7(1): 1148, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442767

RESUMO

For the timely treatment of patients with infections in bloodstream and cerebrospinal fluid, a rapid antimicrobial susceptibility test (AST) is urgently needed. Here, we describe a direct and rapid antimicrobial susceptibility testing (dRAST) system, which can determine the antimicrobial susceptibility of bacteria from a positive blood culture bottle (PBCB) in six hours. The positive blood culture sample is directly mixed with agarose and inoculated into a micropatterned plastic microchip with lyophilized antibiotic agents. Using microscopic detection of bacterial colony formation in agarose, the total time to result from a PBCB for dRAST was only six hours for a wide range of bacterial concentrations in PBCBs. The results from the dRAST system were consistent with the results from a standard AST, broth microdilution test. In tests of clinical isolates (n = 206) composed of 16 Gram-negative species and seven Gram-positive species, the dRAST system was accurate compared to the standard broth microdilution test, with rates of 91.11% (2613/2868) categorical agreement, 6.69% (192/2868) minor error, 2.72% (50/1837) major error and 1.45% (13/896) very major error. Thus, the dRAST system can be used to rapidly identify appropriate antimicrobial agents for the treatment of blood stream infection (BSI) and antibiotic-resistant strain infections.


Assuntos
Hemocultura , Testes de Sensibilidade Microbiana/métodos , Microscopia/métodos , Imagem Óptica/métodos , Antibacterianos/farmacologia , Bacteriemia/microbiologia , Humanos , Meningites Bacterianas/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA