Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nat Immunol ; 22(3): 336-346, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33574616

RESUMO

The anatomic location and immunologic characteristics of brain tumors result in strong lymphocyte suppression. Consequently, conventional immunotherapies targeting CD8 T cells are ineffective against brain tumors. Tumor cells escape immunosurveillance by various mechanisms and tumor cell metabolism can affect the metabolic states and functions of tumor-infiltrating lymphocytes. Here, we discovered that brain tumor cells had a particularly high demand for oxygen, which affected γδ T cell-mediated antitumor immune responses but not those of conventional T cells. Specifically, tumor hypoxia activated the γδ T cell protein kinase A pathway at a transcriptional level, resulting in repression of the activatory receptor NKG2D. Alleviating tumor hypoxia reinvigorated NKG2D expression and the antitumor function of γδ T cells. These results reveal a hypoxia-mediated mechanism through which brain tumors and γδ T cells interact and emphasize the importance of γδ T cells for antitumor immunity against brain tumors.


Assuntos
Neoplasias Encefálicas/imunologia , Citotoxicidade Imunológica , Glioblastoma/imunologia , Linfócitos Intraepiteliais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Evasão Tumoral , Microambiente Tumoral , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Antígenos CD8/genética , Antígenos CD8/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Linfócitos Intraepiteliais/metabolismo , Linfócitos Intraepiteliais/patologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fenótipo , Transdução de Sinais , Hipóxia Tumoral
2.
Immunity ; 46(1): 38-50, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27986454

RESUMO

Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, binds Toll-like receptor 4 (TLR4)-MD2 complex and activates innate immune responses. LPS transfer to TLR4-MD2 is catalyzed by both LPS binding protein (LBP) and CD14. To define the sequential molecular interactions underlying this transfer, we reconstituted in vitro the entire LPS transfer process from LPS micelles to TLR4-MD2. Using electron microscopy and single-molecule approaches, we characterized the dynamic intermediate complexes for LPS transfer: LBP-LPS micelles, CD14-LBP-LPS micelle, and CD14-LPS-TLR4-MD2 complex. A single LBP molecule bound longitudinally to LPS micelles catalyzed multi-rounds of LPS transfer to CD14s that rapidly dissociated from LPB-LPS complex upon LPS transfer via electrostatic interactions. Subsequently, the single LPS molecule bound to CD14 was transferred to TLR4-MD2 in a TLR4-dependent manner. The definition of the structural determinants of the LPS transfer cascade to TLR4 may enable the development of targeted therapeutics for intervention in LPS-induced sepsis.


Assuntos
Proteínas de Fase Aguda/imunologia , Proteínas de Transporte/imunologia , Receptores de Lipopolissacarídeos/imunologia , Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/imunologia , Glicoproteínas de Membrana/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Transdução de Sinais/imunologia
3.
J Allergy Clin Immunol ; 151(5): 1317-1328, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36646143

RESUMO

BACKGROUND: Psoriasis is a chronically relapsing inflammatory skin disease primarily perpetuated by skin-resident IL-17-producing T (T17) cells. Pellino-1 (Peli1) belongs to a member of E3 ubiquitin ligase mediating immune receptor signaling cascades, including nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway. OBJECTIVE: We explored the potential role of Peli1 in psoriatic inflammation in the context of skin-resident T17 cells. METHODS: We performed single-cell RNA sequencing of relapsing and resolved psoriatic lesions with analysis for validation data set of psoriasis. Mice with systemic and conditional depletion of Peli1 were generated to evaluate the role of Peli1 in imiquimod-induced psoriasiform dermatitis. Pharmacologic inhibition of Peli1 in human CD4+ T cells and ex vivo human skin cultures was also examined to evaluate its potential therapeutic implications. RESULTS: Single-cell RNA sequencing analysis revealed distinct T-cell subsets in relapsing psoriasis exhibiting highly enriched gene signatures for (1) tissue-resident T cells, (2) T17 cells, and (3) NF-κB signaling pathway including PELI1. Peli1-deficient mice were profoundly protected from psoriasiform dermatitis, with reduced IL-17A production and NF-κB activation in γδ T17 cells. Mice with conditional depletion of Peli1 treated with FTY720 revealed that Peli1 was intrinsically required for the skin-resident T17 cell immune responses. Notably, pharmacologic inhibition of Peli1 significantly ameliorated murine psoriasiform dermatitis and IL-17A production from the stimulated human CD4+ T cells and ex vivo skin explants modeling psoriasis. CONCLUSION: Targeting Peli1 would be a promising therapeutic strategy for psoriasis by limiting skin-resident T17 cell immune responses.


Assuntos
Dermatite , Psoríase , Camundongos , Humanos , Animais , Interleucina-17 , NF-kappa B/metabolismo , Pele , Modelos Animais de Doenças , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
Immunity ; 40(1): 78-90, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439266

RESUMO

Innate immune recognition controls adaptive immune responses through multiple mechanisms. The MyD88 signaling adaptor operates in many cell types downstream of Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptor family members. Cell-type-specific functions of MyD88 signaling remain poorly characterized. Here, we have shown that the T cell-specific ablation of MyD88 in mice impairs not only T helper 17 (Th17) cell responses, but also Th1 cell responses. MyD88 relayed signals of TLR-induced IL-1, which became dispensable for Th1 cell responses in the absence of T regulatory (Treg) cells. Treg cell-specific ablation of MyD88 had no effect, suggesting that IL-1 acts on naive CD4(+) T cells instead of Treg cells themselves. Together, these findings demonstrate that IL-1 renders naive CD4(+) T cells refractory to Treg cell-mediated suppression in order to allow their differentiation into Th1 cells. In addition, IL-1 was also important for the generation of functional CD4(+) memory T cells.


Assuntos
Interleucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Imunidade Adaptativa , Animais , Células Cultivadas , Imunidade Inata , Memória Imunológica , Terapia de Imunossupressão , Interleucina-18/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Especificidade de Órgãos , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806328

RESUMO

Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.


Assuntos
Células Dendríticas , Neoplasias , Humanos , Imunoterapia , Neoplasias/patologia , Linfócitos T Citotóxicos
6.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769255

RESUMO

Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma. Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma treatments and predicting a patient's prognosis. Commensal bacteria also play a key role in the pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma. Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the development of asthma.


Assuntos
Asma/imunologia , Asma/microbiologia , Microbiota/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Humanos
7.
Proc Natl Acad Sci U S A ; 114(7): E1188-E1195, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137851

RESUMO

The genital mucosa is a barrier that is constantly exposed to a variety of pathogens, allergens, and external stimuli. Although both allergen exposure and parasite infections frequently occur in the genital area, the mechanism by which immune responses-particularly type 2 immunity-are induced has rarely been studied in the genital mucosa. Here, we demonstrate the induction of T helper type 2 (Th2) immunity in the genital mucosa in response to a model allergen, the protease papain. Intravaginal papain immunization induced type 2 immunity in a manner that was dependent on protease activity and the estrous phase of the mice. In addition, IL-33 was released from the vaginal epithelia after intravaginal papain immunization, leading to the activation of type 2 innate lymphoid cells (ILC2s). Moreover, the IL-33-MyD88 (myeloid differentiation primary response gene 88) signaling pathway was critical for the induction of type 2 immunity. We also found that Th2 differentiation in response to intravaginal papain treatment requires a specific dendritic cell (DC) subset that is controlled by interferon regulatory factor 4 (IRF4). These findings suggest that type 2 immunity is induced by a unique mechanism in the genital tract, which is an important, but often overlooked, barrier surface.


Assuntos
Genitália Feminina/imunologia , Imunização/métodos , Papaína/imunologia , Células Th2/imunologia , Animais , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Genitália Feminina/metabolismo , Interleucina-33/imunologia , Interleucina-33/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Papaína/metabolismo , Células Th2/metabolismo , Vagina/imunologia , Vagina/metabolismo
8.
Immunity ; 32(2): 227-39, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20171125

RESUMO

Autophagy is known to be important in presentation of cytosolic antigens on MHC class II (MHC II). However, the role of autophagic process in antigen presentation in vivo is unclear. Mice with dendritic cell (DC)-conditional deletion in Atg5, a key autophagy gene, showed impaired CD4(+) T cell priming after herpes simplex virus infection and succumbed to rapid disease. The most pronounced defect of Atg5(-/-) DCs was the processing and presentation of phagocytosed antigens containing Toll-like receptor stimuli for MHC class II. In contrast, cross-presentation of peptides on MHC I was intact in the absence of Atg5. Although induction of metabolic autophagy did not enhance MHC II presentation, autophagic machinery was required for optimal phagosome-to-lysosome fusion and subsequent processing of antigen for MHC II loading. Thus, our study revealed that DCs utilize autophagic machinery to optimally process and present extracellular microbial antigens for MHC II presentation.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 2/imunologia , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Apresentação de Antígeno/genética , Proteína 5 Relacionada à Autofagia , Células Cultivadas , Células Dendríticas/patologia , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/imunologia , RNA Interferente Pequeno/genética , Quimera por Radiação
9.
Proc Natl Acad Sci U S A ; 113(6): E762-71, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26811463

RESUMO

Commensal microbiota are well known to play an important role in antiviral immunity by providing immune inductive signals; however, the consequence of dysbiosis on antiviral immunity remains unclear. We demonstrate that dysbiosis caused by oral antibiotic treatment directly impairs antiviral immunity following viral infection of the vaginal mucosa. Antibiotic-treated mice succumbed to mucosal herpes simplex virus type 2 infection more rapidly than water-fed mice, and also showed delayed viral clearance at the site of infection. However, innate immune responses, including type I IFN and proinflammatory cytokine production at infection sites, as well as induction of virus-specific CD4 and CD8 T-cell responses in draining lymph nodes, were not impaired in antibiotic-treated mice. By screening the factors controlling antiviral immunity, we found that IL-33, an alarmin released in response to tissue damage, was secreted from vaginal epithelium after the depletion of commensal microbiota. This cytokine suppresses local antiviral immunity by blocking the migration of effector T cells to the vaginal tissue, thereby inhibiting the production of IFN-γ, a critical cytokine for antiviral defense, at local infection sites. These findings provide insight into the mechanisms of homeostasis maintained by commensal bacteria, and reveal a deleterious consequence of dysbiosis in antiviral immune defense.


Assuntos
Antivirais/imunologia , Disbiose/complicações , Imunidade Inata , Interleucina-33/metabolismo , Mucosa/patologia , Vagina/imunologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Contagem de Colônia Microbiana , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Feminino , Herpes Genital/imunologia , Herpes Genital/patologia , Herpes Genital/virologia , Herpesvirus Humano 2/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Interferon gama/biossíntese , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Mucosa/imunologia , Mucosa/virologia , Peptídeo Hidrolases/metabolismo , Linfócitos T/efeitos dos fármacos , Vagina/efeitos dos fármacos , Vagina/patologia , Vagina/virologia
10.
Int J Mol Sci ; 20(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736471

RESUMO

As the outermost layer of the body, the skin harbors innumerable and varied microorganisms. These microorganisms interact with the host, and these interactions contribute to host immunity. One of the most abundant genera of skin commensals is Staphylococcus. Bacteria belonging to this genus are some of the most influential commensals that reside on the skin. For example, colonization by Staphylococcus aureus, a well-known pathogen, increases inflammatory responses within the skin. Conversely, colonization by Staphylococcus epidermis, a coagulase-negative staphylococcal species that are prevalent throughout the skin, can be innocuous or beneficial. Thus, manipulating the abundance of these two bacterial species likely alters the skin microbiome and modulates the cutaneous immune response, with potential implications for various inflammation-associated skin diseases. Importantly, before researchers can begin manipulating the skin microbiome to prevent and treat disease, they must first fully understand how these two species can modulate the cutaneous immune response. In this review, we discuss the nature of the interactions between these two bacterial species and immune cells within the skin, discussing their immunogenicity within the context of skin disorders.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Pele/imunologia , Pele/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus/imunologia , Animais , Portador Sadio , Suscetibilidade a Doenças/imunologia , Humanos , Imunidade , Microbiota , Irmãos , Pele/metabolismo , Infecções Estafilocócicas/metabolismo
11.
J Immunol ; 196(5): 2021-30, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26826245

RESUMO

Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway.


Assuntos
Quimiocina CCL20/imunologia , Quimiotaxia de Leucócito/imunologia , Clusterina/imunologia , Células Dendríticas/imunologia , Pneumonia/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Lavagem Broncoalveolar , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação da Expressão Gênica/imunologia , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Estresse Oxidativo/imunologia , Pyroglyphidae/imunologia , Mucosa Respiratória/imunologia
12.
Antonie Van Leeuwenhoek ; 108(6): 1309-1318, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26349481

RESUMO

A novel strictly anaerobic strain, ALO17(T), was isolated from mouse faeces and found to produce lactic acid as a major metabolic end product. The isolate was observed to be Gram-stain positive, non-motile, non-spore forming small rods, oxidase and catalase negative, and to form cream-coloured colonies on DSM 104 agar plates. The NaCl range for growth was determined to be 0-2 % (w/v). The isolate was found to grow optimally at 37 °C, with 0.5 % (w/v) NaCl and at pH 7. The cell wall hydrolysates were found to contain ribose as a major sugar. The genomic DNA G+C content was determined to be 52.3 mol%. A phylogenetic analysis of the 16S rRNA gene sequence revealed that Holdemanella biformis DSM 3989(T), Faecalicoccus pleomorphus ATCC 29734(T), Faecalitalea cylindroides ATCC 27803(T), and Allobaculum stercoricanis DSM 13633(T) are closely related to the isolate (87.4, 87.3, 86.9 and 86.9 % sequence similarity), respectively. The major cellular fatty acids (>10 %) of the isolate were identified as C18:1 cis 9 FAME (36.9 %), C16:0 FAME (33.7 %) and C18:0 FAME (13.2 %). In contrast to the tested reference strains, C20:0 FAME (4.0 %) was detected only in strain ALO17(T) whilst C16:0 DMA was absent. The isolate also differed in its substrate oxidation profiles from the reference strains by being positive for D-melibiose and stachyose but negative for N-acetyl-D-galactosamine and 3-methyl-D-glucose. On the basis of polyphasic taxonomic evidence from this study, the isolate is concluded to belong to a novel genus within the family Erysipelothricaceae. We propose the name Faecalibaculum rodentium gen. nov., sp. nov. to accommodate strain ALO17(T) (=KCTC 15484(T) = JCM 30274(T)) as the type strain.


Assuntos
Fezes/microbiologia , Firmicutes/classificação , Firmicutes/isolamento & purificação , Anaerobiose , Animais , Composição de Bases , Carboidratos/análise , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Firmicutes/genética , Firmicutes/fisiologia , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Camundongos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Temperatura
13.
Artigo em Inglês | MEDLINE | ID: mdl-38705760

RESUMO

Immune checkpoint blockade (ICB) is one of the leading immunotherapies, although a variable extent of resistance has been observed among patients and across cancer types. Among the efforts underway to overcome this challenge, the microbiome has emerged as a factor affecting the responsiveness and efficacy of ICB. Active research, facilitated by advances in sequencing techniques, is assessing the predominant influence of the intestinal microbiome, as well as the effects of the presence of an intratumoral microbiome. In this review, we describe recent findings from clinical trials, observational studies of human patients, and animal studies on the impact of the microbiome on the efficacy of ICB, highlighting the role of the intestinal and tumor microbiomes and the contribution of methodological advances in their study.

14.
Sensors (Basel) ; 13(9): 12605-31, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24051524

RESUMO

In many court cases, surveillance videos are used as significant court evidence. As these surveillance videos can easily be forged, it may cause serious social issues, such as convicting an innocent person. Nevertheless, there is little research being done on forgery of surveillance videos. This paper proposes a forensic technique to detect forgeries of surveillance video based on sensor pattern noise (SPN). We exploit the scaling invariance of the minimum average correlation energy Mellin radial harmonic (MACE-MRH) correlation filter to reliably unveil traces of upscaling in videos. By excluding the high-frequency components of the investigated video and adaptively choosing the size of the local search window, the proposed method effectively localizes partially manipulated regions. Empirical evidence from a large database of test videos, including RGB (Red, Green, Blue)/infrared video, dynamic-/static-scene video and compressed video, indicates the superior performance of the proposed method.


Assuntos
Algoritmos , Interpretação Estatística de Dados , Fraude , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Gravação em Vídeo/métodos , Razão Sinal-Ruído
15.
Brain Tumor Res Treat ; 11(1): 39-46, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36762807

RESUMO

Oxygen is a vital component of living cells. Low levels of oxygen in body tissues, known as hypoxia, can affect multiple cellular functions across a variety of cell types and are a hallmark of brain tumors. In the tumor microenvironment, abnormal vasculature and enhanced oxygen consumption by tumor cells induce broad hypoxia that affects not only tumor cell characteristics but also the antitumor immune system. Although some immune reactions require hypoxia, hypoxia generally negatively affects immunity. Hypoxia induces tumor cell invasion, cellular adaptations to hypoxia, and tumor cell radioresistance. In addition, hypoxia limits the efficacy of immunotherapy and hinders antitumor responses. Therefore, understanding the role of hypoxia in the brain tumor, which usually does not respond to immunotherapy alone is important for the development of effective anti-tumor therapies. In this review, we discuss recent evidence supporting the role of hypoxia in the context of brain tumors.

16.
Exp Mol Med ; 55(9): 1895-1904, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37696894

RESUMO

The mucosa is a tissue that covers numerous body surfaces, including the respiratory tract, digestive tract, eye, and urogenital tract. Mucosa is in direct contact with pathogens, and γδ T cells perform various roles in the tissue. γδ T cells efficiently defend the mucosa from various pathogens, such as viruses, bacteria, and fungi. In addition, γδ T cells are necessary for the maintenance of homeostasis because they select specific organisms in the microbiota and perform immunoregulatory functions. Furthermore, γδ T cells directly facilitate pregnancy by producing growth factors. However, γδ T cells can also play detrimental roles in mucosal health by amplifying inflammation, thereby worsening allergic responses. Moreover, these cells can act as major players in autoimmune diseases. Despite their robust roles in the mucosa, the application of γδ T cells in clinical practice is lacking because of factors such as gaps between mice and human cells, insufficient knowledge of the target of γδ T cells, and the small population of γδ T cells. However, γδ T cells may be attractive targets for clinical use due to their effector functions and low risk of inducing graft-versus-host disease. Therefore, robust research on γδ T cells is required to understand the crucial features of these cells and apply these knowledges to clinical practices.


Assuntos
Mucosa , Sistema Respiratório , Humanos , Camundongos , Animais , Inflamação , Linfócitos T , Homeostase
17.
Front Immunol ; 14: 1273986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928546

RESUMO

Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Linfócitos Intraepiteliais , Humanos , Receptores de Antígenos de Linfócitos T gama-delta , Imunoterapia/métodos , Linfócitos Intraepiteliais/patologia , Microambiente Tumoral
18.
STAR Protoc ; 4(2): 102278, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37289592

RESUMO

Obesity affects susceptibility to sexually transmitted diseases like genital herpes, caused by herpes simplex virus (HSV) 2. The γδ T cells in the vagina play a major role in HSV-2 suppression. Here, we present a protocol for inducing HSV-2 infection intravaginally in high-fat diet-induced obese mice. We describe steps for isolating single cells from vaginal tissue and analyzing cells using single-cell RNA sequencing and flow cytometry. We then detail confirmation of the γδ T cell phenotype in vitro. For complete details on the use and execution of this protocol, please refer to Park et al.1.

19.
Front Immunol ; 14: 1203929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304294

RESUMO

Type I interferons have long been appreciated as a cytokine family that regulates antiviral immunity. Recently, their role in eliciting antitumor immune responses has gained increasing attention. Within the immunosuppressive tumor microenvironment (TME), interferons stimulate tumor-infiltrating lymphocytes to promote immune clearance and essentially reshape a "cold" TME into an immune-activating "hot" TME. In this review, we focus on gliomas, with an emphasis on malignant glioblastoma, as these brain tumors possess a highly invasive and heterogenous brain TME. We address how type I interferons regulate antitumor immune responses against malignant gliomas and reshape the overall immune landscape of the brain TME. Furthermore, we discuss how these findings can translate into future immunotherapies targeting brain tumors in general.


Assuntos
Neoplasias Encefálicas , Glioma , Interferon Tipo I , Humanos , Neoplasias Encefálicas/terapia , Encéfalo , Antivirais , Microambiente Tumoral
20.
Antiviral Res ; 216: 105656, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327877

RESUMO

The ongoing COVID-19 pandemic caused by SARS-CoV-2 infection has threatened global health. Since the first case of infection was reported in December 2019, SARS-CoV-2 has rapidly spread worldwide and caused millions of deaths. As vaccination is the best way to protect the host from invading pathogens, several vaccines have been developed to prevent the infection of SARS-CoV-2, saving numerous lives thus far. However, SARS-CoV-2 constantly changes its antigens, resulting in escape from vaccine-induced protection, and the longevity of immunity induced by vaccines remains an issue. Additionally, traditional intramuscular COVID-19 vaccines are insufficient at evoking mucosal-specific immune responses. Because the respiratory tract is the primary route of SARS-CoV-2 entry, the need for mucosal vaccines is strong. Using an adenoviral (Ad) vector platform, we generated Ad5-S.Mod, a recombinant COVID-19 vaccine that encodes modified-spike (S) antigen and the genetic adjuvant human CXCL9. Intranasal delivery of Ad5-S.Mod elicited superior airway humoral and T-cell responses over traditional intramuscular vaccines and protected mice from lethal SARS-CoV-2 infection. cDC1 cells were required for the generation of antigen-specific CD8+ T-cell responses and CD8+ tissue-resident memory T-cell development in intranasal Ad5-S.Mod vaccinated mice. Furthermore, we confirmed the efficacy of the intranasal Ad5-S.Mod vaccine in terms of transcriptional changes and identified lung macrophages as a key supporter of maintenance of lung-resident memory T and B cells. Our study demonstrates Ad5-S.Mod has the potential to confer protective immunity against SARS-CoV-2 and that lung macrophages support the maintenance of vaccine-induced tissue-resident memory lymphocytes.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , COVID-19 , Camundongos , Humanos , Animais , Adenoviridae/genética , Vacinas contra COVID-19 , SARS-CoV-2/genética , COVID-19/prevenção & controle , Imunidade nas Mucosas , Glicoproteína da Espícula de Coronavírus/genética , Pandemias , Adjuvantes Imunológicos , Anticorpos Antivirais , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA