Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 28(34): 345201, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28649959

RESUMO

This study proposes a simple method of Au coating on silver nanowires (Ag NWs) transparent conductive films as the anode of organic light emitting diodes (OLED) to increase the work function of the film and thus enhance hole transport. We carefully engineer the process conditions (pretreatment, solution concentrations, and coating number) of the coating using a diluted HAuCl4 solution on the Ag NWs film to minimize etching damage on Ag NWs accompanying the galvanic replacement reaction. Ultraviolet photoelectron spectroscopy and Kelvin probe force microscopy show work function increase of Ag NWs upon Au coating. OLED devices based on Au-coated Ag NWs show a lower turn-on voltage and higher luminance, compared with pristine Ag NWs device. Although the Ag NWs device displays poor efficiencies in the low luminance range due to a high leakage, some of the Au-coated Ag NWs devices showed efficiencies higher than those of the ITO device in a high luminance.

2.
Nanotechnology ; 26(13): 135705, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25760426

RESUMO

This study proposes a novel method of improving the electrical conductivity of silver nanowires (NWs)-networked films for the application of transparent conductive electrodes. We applied Cs-added TiO2 (TiO2:Cs) nanoparticles onto Ag NWs, which caused the NWs to be neatly welded together through local melting at the junctions, according to our transmission and scanning electron microscopy analyses. Systematic comparison of the sheet resistance of the samples reveals that these welded NWs yielded a significant improvement in conductivity. OLED devices, fabricated by using the NW film planarized via embedding the wires into PMMA, demonstrated device performance was comparable with the reference sample with indium tin oxide electrode.

3.
Gels ; 10(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38920912

RESUMO

Cellulose hydrogels, formed either through physical or chemical cross-linking into a three-dimensional network from cellulose or its derivatives, are renowned for their exceptional water absorption capacities and biocompatibility. Rising demands for sustainable materials have spurred interest in cellulose hydrogels, attributed to their abundant supply, biodegradability, and non-toxic nature. These properties highlight their extensive potential across various sectors including biomedicine, the food industry, and environmental protection. Cellulose hydrogels are particularly advantageous in applications such as drug delivery, wound dressing, and water treatment. Recent large-scale studies have advanced our understanding of cellulose preparation and its applications. This review delves into the fundamental concepts, preparation techniques, and current applications of cellulose hydrogels in diverse fields. It also discusses the latest advances in nano-lignin-based hydrogels, providing a comprehensive overview of this promising material and offering insights and guidance for future research and development.

4.
Nanotechnology ; 24(6): 065703, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23340217

RESUMO

This study examines the effects of doping ZnO nanowires (NWs) with Sn on the growth morphology and electrical properties. ZnO NWs with various Sn contents (1-3 at.%) were synthesized using the vapor-liquid-solid method. Scanning electron and transmission electron microscopy analyses showed that all of the Sn-doped NWs grew in a bamboo-like morphology, in which stacking faults enriched with Sn were periodically inserted. We fabricated a hybrid film of InZnO sol-gel and Sn-doped ZnO NW networks to characterize the effects of Sn doping on the electrical properties of the NWs. With increasing doping density, the carrier concentration increases significantly while the mobility decreases greatly. The resistivity remains scattered, which suggests that Sn doping in ZnO is not an effective method for the enhancement of conductivity, since Sn does not readily incorporate into the ZnO structure.

5.
ACS Appl Mater Interfaces ; 15(28): 33721-33731, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37395597

RESUMO

This study proposes the possibility of employing metal iodates as novel gas-sensing materials synthesized using a facile chemical precipitation method. An extensive survey of a library of metal iodates reveals that cobalt, nickel, and copper iodates are useful for gas sensor applications. Material analysis conducted using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravity differential temperature analysis, and Raman spectroscopy enables us to understand the thermal behavior and optimize post-annealing conditions. The evaluation of the gas-sensing performance of the specified metal iodates indicates that all of them display p-type sensing behavior and exhibit a high gas response toward different gases: a gas response of 18.6 by cobalt iodate to 1.8 ppm of acetone, a gas response of 4.3 by nickel iodate to 1 ppm of NO2, and a gas response of 6.6 by copper iodate to 1.8 ppm of H2S. Further investigation of the temperature-programmed reduction of H2 and polarization-electric field hysteresis analyses elucidates that the high gas response originates from the inherent characteristics of metal iodates, such as the high oxygen-reduction ability of iodine, highlighting the potential of the iodates as novel gas-sensing materials.

6.
Phys Chem Chem Phys ; 14(39): 13527-31, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22968167

RESUMO

The decoupling and enhancement of both Seebeck coefficient and electrical conductivity were achieved by constructing the c-axis preferentially oriented nanoscale Sb(2)Te(3) film on monolayer graphene. The external graphene layer provided a highway for charge carriers, which were stored in the thicker binary telluride film, due to the extremely high mobility.

7.
J Nanosci Nanotechnol ; 12(4): 3650-4, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849188

RESUMO

For this investigation of the Ge behavior of condensed Si(1-y)Ge(y) (y > x) cores during the oxidation of Si(1-x)Ge(x) nanowires, Si(1-x)Ge(x) nanowires were grown in a tube furnace by the vapor-liquid-solid method and thermally oxidized. The test results were characterized using several techniques of transmission electron microscopy. The two types of Ge condensation are related to the diameter and Ge content of the nanowires. The consumption of Si atoms in prolonged oxidation caused the condensed SiGe cores to become Ge-only cores; and the continuous oxidation resulted in the oxidation of the Ge cores. The oxidation of Ge atoms was confirmed by scanning transmission electron microscopy.

8.
Soft Robot ; 9(3): 486-496, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34402653

RESUMO

Geometrically multifunctional structures inspired by nature can address the challenges in the development of soft robotics. A bioinspired structure based on origami and kirigami can significantly enhance the stretchability and reliability of soft robots. This study proposes a novel structure with individual, overlapping units, similar to snake scales that can be used to construct shape-morphing batteries for untethered soft robots. The structure is created by folding well-defined, two-dimensional patterns with cutouts. The folding lines mimic the hinge structure of snakeskin, enabling stable deformations without mechanical damage to rigid cells. The structure realizes multi-axial deformability and a zero Poisson's ratio without off-axis distortion to the loading axis. Moreover, to maximize areal density, the optimal cell shape is designed as a hexagon. The structure is applied to a stretchable Li-ion battery, constructed to form an arrangement of electrically interconnected, hexagonal pouch cells. In situ electrochemical characterization and numerical simulation confirm that the shape-morphing scale battery maintains its performance under dynamic deformation with a 90% stretching ratio and 10-mm-radius bending curve, guaranteeing a long-lasting charging/discharging cycle life during cyclic bending and stretching (exceeding 36,000 cycles). Finally, the shape-morphing energy storage device is applied to movable robots, mimicking crawling and slithering, to demonstrate excellent conformability and deformability.


Assuntos
Robótica , Reprodutibilidade dos Testes
9.
Ind Eng Chem Res ; 61(17): 5885-5897, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35571515

RESUMO

Substitutional doping and different nanostructures of ZnO have rendered it an effective sensor for the detection of volatile organic compounds in real-time atmosphere. However, the low selectivity of ZnO sensors limits their applications. Herein, hafnium (Hf)-doped ZnO (Hf-ZnO) nanostructures are developed by the hydrothermal method for high selectivity of hazardous NOX gas in the atmosphere, substantially portraying the role of doping concentration on the enhancement of structural, optical, and sensing behavior. ZnO microspheres with 5% Hf doping showed excellent sensing and detected 22 parts per billion (ppb) NOX gas in the atmosphere, within 24 s, which is much faster than ZnO (90 s), and rendered superior sensing ability (S = 67) at a low temperature (100 °C) compared to ZnO (S = 40). The sensor revealed exceptional stability under humid air (S = 55 at 70% RH), suggesting a potential of 5% Hf-ZnO as a new stable sensing material. Density functional theory (DFT) and other characterization analyses revealed that the high sensing activity of 5% Hf-ZnO is attributed to the accessibility of more adsorption sites arising due to charge distortion, increased oxygen vacancies concentration, Lewis acid base, porous morphology, small particle size (5 nm), and strong bond interaction amidst NO2 molecule with ZnO-Hf-Ovacancy sites, resulting from the substitution of the host cation (Zn2+) with doping cation (Hf4+).

10.
J Colloid Interface Sci ; 608(Pt 3): 2633-2640, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34758920

RESUMO

Nowadays, the fabrication of robust and earth-abundant hydrogen evolution electrocatalysts with noble-metal-like catalytic activities is still facing great challenges. In this report, nanorod (NR)-shaped nickel sulfide (NiS) is successfully decorated on graphene (Gr) by utilizing carbon cloth (CC) as a substrate (NiS-Gr-CC). Benefiting from the NR morphology and strong interfacial synergetic effect between NiS and Gr, the NiS-Gr-CC electrocatalyst shows good catalytic activity for hydrogen evolution reaction (HER). Specifically, the low Tafel slopes of 46 and 56 mV dec-1 along with the small overpotentials of 66 and 71 mV at 10 mA cm-2 are obtained in the acidic and alkaline electrolytes, respectively. Density functional theory results indicate that the combination of NiS and Gr can optimize the adsorption energy of H* during the HER process. The long-term durability measurement result reveals that our NiS-Gr-CC heterostructure has good electrocatalytic cycling stability (∼80 h) in both acidic and alkaline electrolytes. These results confirm that the NiS-Gr-CC heterostructure is a promising candidate for hydrogen evolution electrocatalyst with high catalytic activity.

11.
Gels ; 9(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36661778

RESUMO

Functional aerogels composed of regenerated cellulose and tungsten oxide were fabricated by implanting tungsten-oxide nanodots into regenerated cellulose fiber. This superfast photochromic property benefitted from the small size and even distribution of tungsten oxide, which was caused by the confinement effect of the regenerated cellulose fiber. The composite was characterized using XRD and TEM to illustrate the successful loading of tungsten oxide. The composite turned from pale white to bright blue under ambient solar irradiation in five seconds. The evidence of solar absorption and electron paramagnetic resonance (EPR) demonstrated the fast photochromic nature of the composite and its mechanism. Furthermore, carbon fiber filled with preferential growth tungsten-oxide nanorods was obtained by annealing the photochromic composite in a N2 atmosphere. This annealed product exhibited good absorption across the whole solar spectrum and revealed an excellent photothermal conversion performance. The water evaporation rate reached 1.75 kg m-2 h-1 under one sun illumination, which is 4.4 times higher than that of pure water. The photothermal conversion efficiency was 85%, which shows its potential application prospects in seawater desalination.

12.
Materials (Basel) ; 12(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086029

RESUMO

ReS2 nanosheets are grown on the surface of carbon black (CB) via an efficient hydrothermal method. We confirmed the ultra-thin ReS2 nanosheets with ≈1-4 layers on the surface of the CB (ReS2@CB) by using analytical techniques of field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). The ReS2@CB nanocomposite showed high specific capacities of 760, 667, 600, 525, and 473 mAh/g at the current densities of 0.1 (0.23 C), 0.2 (0.46 C), 0.3 (0.7 C), 0.5 (1.15 C) and 1.0 A/g (2.3 C), respectively, in conjunction with its excellent cycling performance (432 mAh/g at 2.3 C; 91.4% capacity retention) after 100 cycles. Such LIB performance is greatly higher than pure CB and ReS2 powder samples. These results could be due to the following reasons: (1) the low-cost CB serves as a supporter enabling the formation of ≈1-4 layered nanosheets of ReS2, thus avoiding its agglomeration; (2) the CB enhances the electrical conductivity of the ReS2@CB nanocomposite; (3) the ultra-thin (1-4 layers) ReS2 nanosheets with imperfect structure can function as increasing the number of active sites for reaction of Li+ ions with electrolytes. The outstanding performance and unique structural characteristics of the ReS2@CB anodes make them promising candidates for the ever-increasing development of advanced LIBs.

13.
Materials (Basel) ; 12(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018566

RESUMO

High theoretical capacity and low-cost copper sulfide (CuxS)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (NaxS) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous CuxS with a large surface area embedded in the MOF-derived carbon network (CuxS-C) through a two-step process of sulfurization and carbonization via H2S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu1.8S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu1.8S-C/C core/shell anode materials than that of pure Cu1.8S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu1.8S-C to accommodate the volume variation of the Cu1.8S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of NaxS into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu1.8S-C/C structure will be a promising anode material for large-scale and advanced SIBs.

14.
RSC Adv ; 8(17): 9168-9174, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35541878

RESUMO

Here, we studied the effect of thermal annealing on the microstructure and cyclic stability of a (Ti, Fe)-alloyed Si thin-film fabricated by a simple sputtering deposition method for Li-ion battery (LIB) anodes. The anode samples annealed at different temperatures (300-600 °C) were subjected to microstructure analysis and LIB performance test. The (Ti, Fe)-alloyed Si thin-film anode delivered a high capacity of 1563 mA h g-1 for 100 cycles at 0.1 A g-1 with nearly 100% capacity retention. Post-mortem analysis using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) disclosed the microstructural changes of the cycled anodes, revealing that (Ti, Fe) silicides served as a structural buffer against the large volume change of active Si during cycling for enhanced LIB performance.

15.
RSC Adv ; 8(33): 18567, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35543965

RESUMO

[This corrects the article DOI: 10.1039/C7RA13172K.].

16.
Materials (Basel) ; 11(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614800

RESUMO

Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) by electrospinning for a gel polymer electrolyte (GPE) for use in flexible Li-ion batteries (LIBs). As a solvent, we use N-methyl-2-pyrrolidone (NMP), which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP) separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10-3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED), demonstrating a fully flexible unit of LIB and OLED.

17.
Nanoscale ; 9(14): 4713-4720, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28327775

RESUMO

Silicon anodes for lithium ion batteries (LiBs) have been attracting considerable attention due to a theoretical capacity up to about 10 times higher than that of conventional graphite. However, huge volume expansion during the cycle causes cracks in the silicon, resulting in the degradation of cycling performance and eventual failure. Moreover, low electrical conductivity and an unstable solid electrolyte interface (SEI) layer resulting from repeated changes in volume still block the next step forward for the commercialization of the silicon material. Herein we demonstrate the carbon nanotube (CNT) aerogel/Si nanohybrid structure for anode materials of LiBs via freeze casting followed by an RF magnetron sputtering process, exhibiting improved capacity retention compared to Si only samples during 1000 electrochemical cycles. The CNT aerogels as 3D porous scaffold structures could provide buffer volume for the expansion/shrinkage of Si lattices upon cycling and increase electrical conductivity. In addition, the nanospherical and relatively thin SEI layers of the CNT aerogel/Si nanohybrid structure show better lithium ion diffusion characteristics during cycling. For this reason, the Si@CNT aerogel anode still yielded a high specific capacity of 1439 mA h g-1 after 1000 charge/discharge cycles with low capacity fading. Our approach could be applied to other group IV LiB materials that undergo large volume changes, and also has promising potential for high performance energy applications.

18.
ACS Nano ; 11(2): 1982-1990, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28187259

RESUMO

We report on an all-solution-processed fabrication of highly efficient green quantum dot-light-emitting diodes (QLEDs) with an inverted architecture, where an interfacial polymeric surface modifier of polyethylenimine ethoxylated (PEIE) is inserted between a quantum dot (QD) emitting layer (EML) and a hole transport layer (HTL), and a MoOx hole injection layer is solution deposited on top of the HTL. Among the inverted QLEDs with varied PEIE thicknesses, the device with an optimal PEIE thickness of 15.5 nm shows record maximum efficiency values of 65.3 cd/A in current efficiency and 15.6% in external quantum efficiency (EQE). All-solution-processed fabrication of inverted QLED is further implemented on a flexible platform by developing a high-performing transparent conducting composite film of ZnO nanoparticles-overcoated on Ag nanowires. The resulting flexible inverted device possesses 35.1 cd/A in current efficiency and 8.4% in EQE, which are also the highest efficiency values ever reported in flexible QLEDs.

19.
ACS Appl Mater Interfaces ; 8(13): 8576-82, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26989951

RESUMO

We introduce an amorphous indium-gallium-zinc-oxide (a-IGZO) heterostructure phototransistor consisting of solution-based synthetic molybdenum disulfide (few-layered MoS2, with a band gap of ∼1.7 eV) and sputter-deposited a-IGZO (with a band gap of ∼3.0 eV) films as a novel sensing element with a broad spectral responsivity. The MoS2 and a-IGZO films serve as a visible light-absorbing layer and a high mobility channel layer, respectively. Spectroscopic measurements reveal that appropriate band alignment at the heterojunction provides effective transfer of the visible light-induced electrons generated in the few-layered MoS2 film to the underlying a-IGZO channel layer with a high carrier mobility. The photoresponse characteristics of the a-IGZO transistor are extended to cover most of the visible range by forming a heterojunction phototransistor that harnesses a visible light responding MoS2 film with a small band gap prepared through a large-area synthetic route. The MoS2-IGZO heterojunction phototransistors exhibit a photoresponsivity of approximately 1.7 A/W at a wavelength of 520 nm (an optical power of 1 µW) with excellent time-dependent photoresponse dynamics.

20.
J Nanosci Nanotechnol ; 15(10): 8251-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26726497

RESUMO

This paper investigates the effects of the Sb content (x) on (Bi(1-x)Sb(x))2Te3 thermoelectric films with x changing widely from 0 (Sb2Te3) to 1 (Bi2Te3). First, the XRD analysis discloses that with the Sb content (x) increasing, the phase changed gradually from Bi2Te3 to Sb2Te3 as Sb atoms replaced substitutionally Bi atoms. Further microstructure analysis reveals that an extensive grain growth occurred during post-annealing for the samples with high Sb contents. According to the measurement of electrical and thermoelectric properties, the polarity of the charge carrier and Seebeck coefficient switched n-type to p-type in the range of x = 0.45~0.63. For the n-type samples, the power factor is highest when x = 0.18 around 46.01 µW/K(2) whereas Sb2Te3, for the p-type samples, shows the highest value, 62.48 µW/K(2)cm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA