Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lasers Surg Med ; 54(3): 399-406, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34481419

RESUMO

OBJECTIVES: Intraoperative localization and preservation of parathyroid glands (PGs) are challenging during thyroid surgery. A new noninvasive technique of combined near-infrared PG autofluorescence detection and dye-free imaging angiography that allows intraoperative feedback has recently been introduced. The objective of this study was to evaluate this technique in real-time. MATERIALS AND METHODS: A pilot feasibility study of a portable imaging device in four patients who underwent either thyroid lobectomy or total thyroidectomy is presented. PG autofluorescence and vascularity/tissue perfusion were monitored using a real-time screen display during the surgical procedure. RESULTS: Three lobectomies and one total thyroidectomy were performed. Among the nine PGs identified by the operating surgeon, eight PGs were confirmed using the autofluorescence device. Each PG was successfully determined to be either well-perfused or devascularized, and devascularized PGs were autotransplanted. CONCLUSIONS: The preliminary results suggest that the combination of PG autofluorescence detection and dye-free angiography can potentially be used to assess PG function. With further validation studies, the effectiveness of this technique in clinical practice can be further delineated.


Assuntos
Glândulas Paratireoides , Tireoidectomia , Angiografia , Estudos de Viabilidade , Humanos , Imagem Óptica , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/cirurgia , Perfusão , Tireoidectomia/métodos
2.
Nat Commun ; 15(1): 8456, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349426

RESUMO

Soft robots typically involve manual assembly of core hardware components like actuators, sensors, and controllers. This increases fabrication time and reduces consistency, especially in small-scale soft robots. We present a scalable monolithic fabrication method for millimeter-scale soft-rigid hybrid robots, simplifying the integration of core hardware components. Actuation is provided by soft-foldable polytetrafluoroethylene film-based actuators powered by ionic fluid injection. The desired motion is encoded by integrating a mechanical controller, comprised of rigid-flexible materials. The robot's motion can be self-sensed using an ionic resistive sensor by detecting electrical resistance changes across its body. Our approach is demonstrated by fabricating three distinct soft-rigid hybrid robotic modules, each with unique degrees of freedom: translational, bending, and roto-translational motions. These modules connect to form a soft-rigid hybrid continuum robot with real-time shape-sensing capabilities. We showcase the robot's capabilities by performing object pick-and-place, needle steering and tissue puncturing, and optical fiber steering tasks.

3.
J Biophotonics ; 15(8): e202200008, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35340114

RESUMO

Early and precise detection of parathyroid glands (PGs) is a challenging problem in thyroidectomy due to their small size and similar appearance to surrounding tissues. Near-infrared autofluorescence (NIRAF) has stimulated interest as a method to localize PGs. However, high incidence of false positives for PGs has been reported with this technique. We introduce a prototype equipped with a coaxial excitation light (785 nm) and a dual-sensor to address the issue of false positives with the NIRAF technique. We test the clinical feasibility of our prototype in situ and ex vivo using sterile drapes on 10 human subjects. Video data (1287 images) of detected PGs were collected to train, validate and compare the performance for PG detection. We achieved a mean average precision of 94.7% and a 19.5-millisecond processing time/detection. This feasibility study supports the effectiveness of the optical design and may open new doors for a deep learning-based PG detection method.


Assuntos
Glândulas Paratireoides , Paratireoidectomia , Computadores , Humanos , Imagem Óptica/métodos , Glândulas Paratireoides/diagnóstico por imagem , Paratireoidectomia/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA