Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36260974

RESUMO

We use CeOx-TiO2hetero-interfaces generated on the surface of CeOx-TiO2hybrid oxide supporting powders to stabilize Au single-atoms (SAs) with excellent low-temperature activity toward CO oxidation. Based on intriguing density functional theory calculation results on the preferential formation of Au-SAs at the CeOx-TiO2interfaces and the high activity of Au-SAs toward the Mars-van Krevelen type CO oxidation, we synthesized a Au/CeOx-TiO2(ACT) catalyst with 0.05 wt.% of Au content. The Au-SAs stabilized at the CeOx-TiO2interfaces by electronic coupling between Au and Ce showed improved low-temperature CO oxidation activity than the conventional Au/TiO2control group catalyst. However, the light-off profile of ACT showed that the early activated Au-SAs are not vigorously participating in CO oxidation. The large portion of the positive effect on the overall catalytic activity from the low activation energy barrier of ACT was retarded by the negative impact from the decreasing active site density at high temperatures. We anticipate that the low-temperature activity and high-temperature stability of Au-SAs that stand against each other can be optimized by controlling the electronic coupling strength between Au-SAs and oxide clusters at the Au-oxide-TiO2interfaces. Our results show that atomic-precision interface modulation could fine-tune the catalytic activity and stability of Au-SAs.

2.
J Am Chem Soc ; 140(20): 6317-6324, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29723475

RESUMO

The Lewis acid-base adduct approach has been widely used to form uniform perovskite films, which has provided a methodological base for the development of high-performance perovskite solar cells. However, its incompatibility with formamidinium (FA)-based perovskites has impeded further enhancement of photovoltaic performance and stability. Here, we report an efficient and reproducible method to fabricate highly uniform FAPbI3 films via the adduct approach. Replacement of the typical Lewis base dimethyl sulfoxide (DMSO) with N-methyl-2-pyrrolidone (NMP) enabled the formation of a stable intermediate adduct phase, which can be converted into a uniform and pinhole-free FAPbI3 film. Infrared and computational analyses revealed a stronger interaction between NMP with the FA cation than DMSO, which facilitates the formation of a stable FAI·PbI2·NMP adduct. On the basis of the molecular interactions with different Lewis bases, we proposed criteria for selecting the Lewis bases. Owed to the high film quality, perovskite solar cells with the highest PCE over 20% (stabilized PCE of 19.34%) and average PCE of 18.83 ± 0.73% were demonstrated.

3.
Nanotechnology ; 29(5): 055602, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29160771

RESUMO

Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.

4.
J Phys Chem A ; 122(48): 9350-9358, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30412403

RESUMO

The polarizable charge equilibration (PQEq) method was developed to provide a simple but accurate description of the electrostatic interactions and polarization effects in materials. Previously, we optimized four parameters per element for the main group elements. Here, we extend this optimization to the 24 d-block transition-metal (TM) elements, columns 4-11 of the periodic table including Ti-Cu, Zr-Ag, and Hf-Au. We validate the PQEq description for these elements by comparing to interaction energies computed by quantum mechanics (QM). Because many materials applications involving TM are for oxides and other compounds that formally oxidize the metal, we consider a variety of oxidation states in 24 different molecular clusters. In each case, we compare interaction energies and induced fields from QM and PQEq along various directions. We find that the original χ and J parameters (electronegativity and hardness) related to the ionization of the atom remain valid; however, we find that the atomic radius parameter needs to be close to the experimental ionic radii of the transition metals. This leads to a much higher spring constant to describe the atomic polarizability. We find that these optimized parameters for PQEq provide accurate interaction energies compared to QM with charge distributions that depend in a reasonable way on the coordination number and oxidation states of the transition metals. We expect that this description of the electrostatic interactions for TM will be useful in molecular dynamics simulations of inorganic and organometallic materials.

5.
Phys Chem Chem Phys ; 19(25): 16498-16506, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28608873

RESUMO

To prevent car accidents, it is important to evaluate the thermal stability of tire rubbers, such as natural rubber (NR), butadiene rubber (BR), and styrene-butadiene rubber (SBR). Controlling the glass transition temperature (Tg) is the main factor for obtaining desirable thermal stability. Here, we developed an optimized equation for the prediction of the Tg of the various rubber systems using molecular dynamics (MD) simulations. We modeled a random copolymer system, blended monomers, and calculated the Tg of butadiene isomers in each composition. From these results, we designed the Tg contour of ternary cis-trans-vinyl butadiene and derived an equation of Tg for the ternary system. Moreover, we developed an equation to evaluate the pseudo-ternary Tg of quaternary SBR and plotted it. Our results present a novel way of predicting the Tg of ternary BR and quaternary SBR, which is critical for rational tire design with optimized thermal and mechanical stability.

6.
Nanotechnology ; 27(34): 345706, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27454465

RESUMO

By treating oleylamine (OA)-capped Ag-Cu nanoparticles with tetramethylammonium hydroxide (TMAH), we obtained metal nanoparticles that are suspended in polar solvents and sinterable at low temperatures. The simple process with ultra sonication enables synthesis of monodispersed and high purity nanoparticles in an organic base, where the resulting nanoparticles are dispersible in polar solvents such as ethanol and isopropyl alcohol. To investigate the surface characteristics, we conducted Fourier-transform infrared and zeta-potential analyses. After thermal sintering at 200 °C, which is approximately 150 °C lower than the thermal decomposition temperature of OA, an electrically conductive thin film was obtained. Electrical resistivity measurements of the TMAH-treated ink demonstrate that surface modified nanoparticles have a low resistivity of 13.7 × 10(-6) Ω cm. These results confirm the prospects of using low-temperature sinterable nanoparticles as the electrode layer for flexible printed electronics without damaging other stacked polymer layers.

7.
Phys Chem Chem Phys ; 18(19): 13232-8, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27118269

RESUMO

The mechanism of the catalytic oxidation of CO activated by MoS2-supported Au19 nanoparticles (NPs) was studied using density functional theory calculations. Of particular interest were the effects of the physical/chemical modification of a MoS2 support on the CO oxidation pathway and the activation of specific reactive centers, i.e., the Au atoms of Au19 or the Au-MoS2 perimeter sites. We systematically modified MoS2 by introducing an S vacancy or 5% tensile strain and studied the shift of each reaction step and the overall change in the reaction pathway and activity. Despite the lack of direct involvement of the Au-MoS2 perimeter in the reaction, the combination of an S vacancy and the tensile strain in the MoS2 support was found to improve the stability and catalytic activity of Au NPs for CO oxidation. The results show that support modification can provide information for new pathways for the rational design of Au-based catalysts.

8.
Nanotechnology ; 26(45): 455601, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26489391

RESUMO

In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

9.
J Chem Phys ; 141(13): 134108, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296785

RESUMO

Ammonia (NH3) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (Eb) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (Eb) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH3 nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH3 nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH3 nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH3 nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.

10.
Adv Sci (Weinh) ; : e2403752, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159050

RESUMO

Herein, a heterogeneous structure of Ni-Mo catalyst comprising Ni4Mo nanoalloys decorated on a MoOx matrix via electrodeposition is introduced. This catalyst exhibits remarkable hydrogen evolution reaction (HER) activity across a range of pH conditions. The heterogeneous Ni-Mo catalyst showed low overpotentials only of 24 and 86, 21 and 60, and 37 and 168 mV to produce a current density of 10 and 100 mA cm-2 (η10 and η100) in alkaline, acidic, and neutral media, respectively, which represents one of the most active catalysts for the HER. The enhanced activity is attributed to the hydrogen spillover effect, where hydrogen atoms migrate between the Ni4Mo alloys and the MoOx matrix, forming hydrogen molybdenum bronze as additional active sites. Additionally, the Ni4Mo facilitated the water dissociation process, which helps the Volmer step in the alkaline/neutral HER. Through electrochemical analysis, in situ Raman spectroscopy, and density functional theory calculations, the fast HER mechanism is elucidated.

11.
Adv Sci (Weinh) ; 11(25): e2401782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654698

RESUMO

Water electrolyzers powered by renewable energy are emerging as clean and sustainable technology for producing hydrogen without carbon emissions. Specifically, anion exchange membrane (AEM) electrolyzers utilizing non-platinum group metal (non-PGM) catalysts have garnered attention as a cost-effective method for hydrogen production, especially when integrated with solar cells. Nonetheless, the progress of such integrated systems is hindered by inadequate water electrolysis efficiency, primarily caused by poor oxygen evolution reaction (OER) electrodes. To address this issue, a NiFeCo─OOH has developed as an OER electrocatalyst and successfully demonstrated its efficacy in an AEM electrolyzer, which is powered by renewable electricity and integrated with a silicon solar cell.

12.
Phys Chem Chem Phys ; 15(14): 5186-92, 2013 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-23455435

RESUMO

We report first-principles calculations of adsorption, dissociation, penetration, and diffusion for the complete nitridation mechanism of nitrogen molecules on a pure Fe surface (bcc, ferrite phase). The mechanism of the definite reaction path was calculated by dividing the process into four steps. We investigated various reaction paths for each step including the energy barrier based on the climb image nudged elastic band (CI-NEB) method, and the complete reaction pathway was computed as the minimum energy path (MEP). The adsorption characteristics of nitrogen (N) and molecular nitrogen (N2) indicate that nitrogen atoms and molecules are energetically favorable at the hollow sites on pure Fe(100) and (110). The dissociation of the nitrogen molecule (N2) was theoretically supported by electronic structure calculations. The penetration of nitrogen from the surface to the sub-surface has a large energy barrier compared with the other steps. The activation energy calculated for nitrogen diffusion in pure bcc Fe was in good agreement with the experimental results. Finally, we confirmed the rate-determining step for the full nitridation reaction pathway. This study provides fundamental insight into the nitridation mechanism for nitrogen molecules in pure bcc Fe.


Assuntos
Compostos Férricos/química , Nitrogênio/química , Teoria Quântica , Adsorção , Difusão , Propriedades de Superfície
13.
J Nanosci Nanotechnol ; 13(9): 6027-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24205593

RESUMO

To control the optical properties of Cu2O for a variety of application, we synthesized Cu2O in nanoscale without other treatments. Cu2O nanoparticles with an average size of 2.7 nm (sigma < or = 3.7%) were successfully synthesized in this study via a modified thermal decomposition process. Copper (II) acetylacetonate was used as a precursor, and oleylamine was used as a solvent, a surfactant and a reducing agent. The oleylamine-mediated synthesis allowed for the preparation of Cu2O nanoparticles with a narrower size distribution, and the nanoparticles were synthesized in the presence of a borane tert-butylamine (BTB) complex, where BTB was a strong co-reducing agent together with oleylamine. UV-vis spectroscopy analysis suggest that band gap energy of these Cu2O particles is enlarged from 2.1 eV in the bulk to 3.1 eV in the 2.7-nm nanoparticles, which is larger than most other reported value of Cu2O nanoparticles. Therefore, these nanoparticles could be used as a transparent material because of transformed optical property.

14.
Nat Commun ; 14(1): 3004, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230963

RESUMO

Surface Pourbaix diagrams are critical to understanding the stability of nanomaterials in electrochemical environments. Their construction based on density functional theory is, however, prohibitively expensive for real-scale systems, such as several nanometer-size nanoparticles (NPs). Herein, with the aim of accelerating the accurate prediction of adsorption energies, we developed a bond-type embedded crystal graph convolutional neural network (BE-CGCNN) model in which four bonding types were treated differently. Owing to the enhanced accuracy of the bond-type embedding approach, we demonstrate the construction of reliable Pourbaix diagrams for very large-size NPs involving up to 6525 atoms (approximately 4.8 nm in diameter), which enables the exploration of electrochemical stability over various NP sizes and shapes. BE-CGCNN-based Pourbaix diagrams well reproduce the experimental observations with increasing NP size. This work suggests a method for accelerated Pourbaix diagram construction for real-scale and arbitrarily shaped NPs, which would significantly open up an avenue for electrochemical stability studies.

15.
ACS Sens ; 8(10): 3687-3692, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721017

RESUMO

We present a thermally stable, mechanically compliant, and sensitive polymer-based NO2 gas sensor design. Interconnected nanoscale morphology driven from spinodal decomposition between conjugated polymers tethered with polar side chains and thermally stable matrix polymers offers judicious design of NO2-sensitive and thermally tolerant thin films. The resulting chemiresitive sensors exhibit stable NO2 sensing even at 170 °C over 6 h. Controlling the density of polar side chains along conjugated polymer backbone enables optimal design for coupling high NO2 sensitivity, selectivity, and thermal stability of polymer sensors. Lastly, thermally stable films are used to implement chemiresistive sensors onto flexible and heat-resistant substrates and demonstrate a reliable gas sensing response even after 500 bending cycles at 170 °C. Such unprecedented sensor performance as well as environmental stability are promising for real-time monitoring of gas emission from vehicles and industrial chemical processes.


Assuntos
Temperatura Alta , Dióxido de Nitrogênio , Polímeros
16.
J Am Chem Soc ; 134(3): 1560-70, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22191484

RESUMO

Density functional theory was used to study the CO oxidation catalytic activity of CeO(2)-supported Au nanoparticles (NPs). Experimental observations on CeO(2) show that the surface of CeO(2) is enriched with oxygen vacancies. We compare CO oxidation by a Au(13) NP supported on stoichiometric CeO(2) (Au(13)@CeO(2)-STO) and partially reduced CeO(2) with three vacancies (Au(13)@CeO(2)-3VAC). The structure of the Au(13) NP was chosen to minimize structural rearrangement during CO oxidation. We suggest three CO oxidation mechanisms by Au(13)@CeO(2): CO oxidation by coadsorbed O(2), CO oxidation by a lattice oxygen in CeO(2), and CO oxidation by O(2) bound to a Au-Ce(3+) anchoring site. Oxygen vacancies are shown to open a new CO oxidation pathway by O(2) bound to a Au-Ce(3+) anchoring site. Our results provide a design strategy for CO oxidation on supported Au catalysts. We suggest lowering the vacancy formation energy of the supporting oxide, and using an easily reducible oxide to increase the concentration of reduced metal ions, which act as anchoring sites for O(2) molecules.

17.
Opt Express ; 20(3): 2761-71, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330512

RESUMO

A new yellow-emitting γ-Ca2SiO4:Ce3+,Li+ phosphor was synthesized via a solid-state reaction. The phosphor showed a strong yellow emission with a wide bandwidth of 135.4 nm under blue light excitation. Absorption and photoluminescence measurements and density functional theory calculations suggest that the luminescence of the phosphor can be attributed primarily to the transitions of 5d→4f (2F(7/2) and 2F(5/2)) of Ce3+ ions occupying Ca(1) sites in the host crystal. White light-emitting diodes (LEDs) were fabricated by combining this phosphor with a blue LED, and excellent white light with a high color rendering index of 86 was created owing to the wide emission bandwidth of the phosphor.


Assuntos
Iluminação/instrumentação , Semicondutores , Cor , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
18.
Nanotechnology ; 23(6): 065601, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22248919

RESUMO

To steadily apply conductive inks that contain Cu nanoparticles (NPs) to inkjet printing of patterns at temperatures below 150 °C, the size of the Cu NPs must be reduced. Therefore, we obtained Cu NPs in the range of 9-33 nm, and we studied how their size changes. The variation of the chemical reaction rate changed the size of the Cu NPs for two main reasons. First, the fast transition rate of the Cu precursors at high pH values raises the supersaturation level of the Cu precursor above that of a process with a slow transition rate. The high supersaturation level is generally attributed to the small Cu nuclei and the slow growth caused by their density. Second, the high viscosity of the reaction solution, which occurs because polyvinyl pyrrolidone (PVP) causes an increase in the repulsive force, slows the growth of the Cu NPs at high pH values. The recrystallization temperature of the 9 nm Cu NPs was reduced to 108 °C, and a low specific resistivity of 45 µΩ cm was achieved using the conductive ink prepared with 9 nm Cu NPs at 120 °C. This temperature is significantly lower than those reported for other Cu NP inks. Hence, Cu NP conductive ink could considerably reduce costs because of its apparently low temperature, resolving the main bottleneck of inkjet printing on flexible (polymeric) substrates.

19.
Phys Chem Chem Phys ; 14(8): 2791-6, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22270598

RESUMO

We studied the structural evolution of a 270-atom Ag-Au bimetallic nanoparticle (2 nm in size) with varying composition and temperature. The liquid to solid transition region and the solid-state structure were investigated using molecular dynamics simulations. To determine the exact transition temperature region, we applied the mean square displacement and structure deviation methods, as well as the generally used caloric curve of potential energy versus temperature. The results showed that a complete solid-solution phase diagram of the binary Ag-Au system was obtained. Irrespective of the composition, the freezing temperature of a Ag-Au bimetallic nanoparticle was lower than that of the bulk state by a margin of several hundred degrees, and three different solid-state structures are proposed in relation to the Au composition. Our phase diagram offers guidance for the application of Ag-Au nanoparticles.

20.
Nano Lett ; 11(8): 3290-4, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21770385

RESUMO

We report a new and highly versatile approach to artificial layered materials synthesis which borrows concepts of molecular beam epitaxy, self-assembly, and graphite intercalation compounds. It readily yields stacks of graphene (or other two-dimensional sheets) separated by virtually any kind of "guest" species. The new material can be "sandwich like", for which the guest species are relatively closely spaced and form a near-continuous inner layer of the sandwich, or "veil like", where the guest species are widely separated, with each guest individually draped within a close-fitting, protective yet atomically thin graphene net or veil. The veils and sandwiches can be intermixed and used as a two-dimensional platform to control the movements and chemical interactions of guest species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA