Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Ecotoxicol Environ Saf ; 269: 115820, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103469

RESUMO

Perfluorooctanesulfonate (PFOS) is a ubiquitous environmental pollutant associated with increasing health concerns and environmental hazards. Toxicological analyses of PFOS exposure are hampered by large interspecies variations and limited studies on the mechanistic details of PFOS-induced toxicity. We investigated the effects of PFOS exposure on Xenopus laevis embryos based on the reported developmental effects in zebrafish. X. laevis was selected to further our understanding of interspecies variation in response to PFOS, and we built upon previous studies by including transcriptomics and an assessment of ciliogenic effects. Midblastula-stage X. laevis embryos were exposed to PFOS using the frog embryo teratogenesis assay Xenopus (FETAX). Results showed teratogenic effects of PFOS in a time- and dose-dependent manner. The morphological abnormalities of skeleton deformities, a small head, and a miscoiled gut were associated with changes in gene expression evidenced by whole-mount in situ hybridization and transcriptomics. The transcriptomic profile of PFOS-exposed embryos indicated the perturbation in the expression of genes associated with cell death, and downregulation in adenosine triphosphate (ATP) biosynthesis. Moreover, we observed the effects of PFOS exposure on cilia development as a reduction in the number of multiciliated cells and changes in the directionality and velocity of the cilia-driven flow. Collectively, these data broaden the molecular understanding of PFOS-induced developmental effects, whereby ciliary dysfunction and disrupted ATP synthesis are implicated as the probable modes of action of embryotoxicity. Furthermore, our findings present a new challenge to understand the links between PFOS-induced developmental toxicity and vital biological processes.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Perfilação da Expressão Gênica , Peixe-Zebra , Animais , Xenopus laevis/genética , Trifosfato de Adenosina , Embrião não Mamífero , Teratogênicos/toxicidade
2.
Environ Toxicol ; 38(1): 216-224, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36218123

RESUMO

Pentachloronitrobenzene (PCNB) is an organochlorine fungicide commonly used to treat seeds against seedling infections and controlling snow mold on golf courses. PCNB has been demonstrated to be toxic to living organisms, including fish and several terrestrial organisms. However, only phenotypical deformities have been studied, and the effects of PCNB on early embryogenesis, where primary organogenesis occurs, have not been completely studied. In the current study, the developmental toxicity and teratogenicity of PCNB is evaluated by using frog embryo teratogenesis assay Xenopus (FETAX). Our results confirmed the teratogenic potential of PCNB revealing the teratogenic index of 1.29 during early embryogenesis. Morphological studies revealed tiny head, bent axis, reduced inter ocular distance, hyperpigmentation, and reduced total body lengths. Whole mount in situ hybridization and reverse transcriptase polymerase chain reaction were used to identify PCNB teratogenic effects at the gene level. The gene expression analyses revealed that PCNB was embryotoxic to the liver and heart of developing embryos. Additionally, to determine the most sensitive developmental stages to PCNB, embryos were exposed to the compound at various developmental stages, demonstrating that the most sensitive developmental stage to PCNB is primary organogenesis. Taken together, we infer that PCNB's teratogenic potential affects not just the phenotype of developing embryos but also the associated genes and involving the oxidative stress as a possible mechanism of toxicity, posing a hazard to normal embryonic growth. However, the mechanisms of teratogenesis require additional extensive investigation to be defined completely.


Assuntos
Teratogênese , Animais , Xenopus laevis/genética , Embrião não Mamífero , Teratogênicos/toxicidade , Desenvolvimento Embrionário/genética , Expressão Gênica
3.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628261

RESUMO

The relationship between transcription and aging is one that has been studied intensively and experimentally with diverse attempts. However, the impact of the nuclear mRNA export on the aging process following its transcription is still poorly understood, although the nuclear events after transcription are coupled closely with the transcription pathway because the essential factors required for mRNA transport, namely TREX, TREX-2, and nuclear pore complex (NPC), physically and functionally interact with various transcription factors, including the activator/repressor and pre-mRNA processing factors. Dysregulation of the mediating factors for mRNA export from the nucleus generally leads to the aberrant accumulation of nuclear mRNA and further impairment in the vegetative growth and normal lifespan and the pathogenesis of neurodegenerative diseases. The optimal stoichiometry and density of NPC are destroyed during the process of cellular aging, and their damage triggers a defect of function in the nuclear permeability barrier. This review describes recent findings regarding the role of the nuclear mRNA export in cellular aging and age-related neurodegenerative disorders.


Assuntos
Núcleo Celular , Transporte de RNA , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Poro Nuclear/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887370

RESUMO

Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOylation has been considered a crucial post-translational modification in diverse cellular functions. In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release to maintaining mitochondrial integrity and determining neuronal health. It has been discovered that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD). PubMed and Google Scholar databases were searched with keywords such as 'SUMO', 'neuronal plasticity', and 'depression' to obtain relevant scientific literature. Here, we provide an overview of recent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants suffering from MDD.


Assuntos
Transtorno Depressivo Maior , Sumoilação , Transtorno Depressivo Maior/metabolismo , Humanos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
5.
Biochem Biophys Res Commun ; 545: 69-74, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33545634

RESUMO

Peroxisomes play an essential role in cellular homeostasis by regulating lipid metabolism and the conversion of reactive oxygen species (ROS). Several peroxisomal proteins, known as peroxins (PEXs), control peroxisome biogenesis and degradation. Various mutations in the PEX genes are genetic causes for the development of inheritable peroxisomal-biogenesis disorders, such as Zellweger syndrome. Among the peroxins, PEX1 defects are the most common mutations in Zellweger syndrome. PEX1 is an AAA-ATPase that regulates the recycling of PEX5, which is essential for importing peroxisome matrix proteins. However, the post-transcriptional regulation of PEX1 is largely unknown. Here, we showed that heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) controls PEX1 expression. In addition, we found that depletion of HNRNPA1 induces autophagic degradation of peroxisome, which is blocked in ATG5-knockout cells. In addition, depletion of HNRNPA1 increased peroxisomal ROS levels. Inhibition of the generation of peroxisomal ROS by treatment with NAC significantly suppressed pexophagy in HNRNPA1-deficient cells. Taken together, our results suggest that depletion of HNRNPA1 increases peroxisomal ROS and pexophagy by downregulating PEX1 expression.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Macroautofagia/fisiologia , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células Cultivadas , Regulação para Baixo , Técnicas de Inativação de Genes , Células HCT116 , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1/deficiência , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Macroautofagia/genética , Proteínas de Membrana/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo
6.
Genes Dev ; 27(5): 491-503, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23475958

RESUMO

The formation of tissue boundaries is dependent on the cell-cell adhesion/repulsion system that is required for normal morphogenetic processes during development. The Smad ubiquitin regulatory factors (Smurfs) are E3 ubiquitin ligases with established roles in cell growth and differentiation, but whose roles in regulating cell adhesion and migration are just beginning to emerge. Here, we demonstrate that the Smurfs regulate tissue separation at mesoderm/ectoderm boundaries through antagonistic interactions with ephrinB1, an Eph receptor ligand that has a key role in regulating the separation of embryonic germ layers. EphrinB1 is targeted by Smurf2 for degradation; however, a Smurf1 interaction with ephrinB1 prevents the association with Smurf2 and precludes ephrinB1 from ubiquitination and degradation, since it is a substantially weaker substrate for Smurf1. Inhibition of Smurf1 expression in embryonic mesoderm results in loss of ephrinB1-mediated separation of this tissue from the ectoderm, which can be rescued by the coincident inhibition of Smurf2 expression. This system of differential interactions between Smurfs and ephrinB1 regulates the maintenance of tissue boundaries through the control of ephrinB protein levels.


Assuntos
Efrina-B1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Xenopus/genética , Xenopus/metabolismo , Animais , Embrião não Mamífero/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500843

RESUMO

Primary cilia mediate the interactions between cells and external stresses. Thus, dysregulation of primary cilia is implicated in various ciliopathies, e.g., degeneration of the retina caused by dysregulation of the photoreceptor primary cilium. Particulate matter (PM) can cause epithelium injury and endothelial dysfunction by increasing oxidative stress and inflammatory responses. Previously, we showed that PM disrupts the formation of primary cilia in retinal pigment epithelium (RPE) cells. In the present study, we identified 2-isopropylmalic acid (2-IPMA) as a novel inducer of primary ciliogenesis from a metabolite library screening. Both ciliated cells and primary cilium length were increased in 2-IPMA-treated RPE cells. Notably, 2-IPMA strongly promoted primary ciliogenesis and restored PM2.5-induced dysgenesis of primary cilia in RPE cells. Both excessive reactive oxygen species (ROS) generation and activation of a stress kinase, JNK, by PM2.5 were reduced by 2-IPMA. Moreover, 2-IPMA inhibited proinflammatory cytokine production, i.e., IL-6 and TNF-α, induced by PM2.5 in RPE cells. Taken together, our data suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in RPE cells.


Assuntos
Inflamação/metabolismo , Material Particulado/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Citocinas/metabolismo , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , MAP Quinase Quinase 4/metabolismo , Malatos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Retina
8.
Biochem Biophys Res Commun ; 527(4): 896-901, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32430182

RESUMO

Dachshund 1(Dach1) is a key component of the retinal determination gene network that plays significant roles in cell fate regulation. The vertebrate homolog of Drosophila dachshund has gained considerable importance as an essential regulator of development, but its functions during embryonic development remain elusive. We investigated the functional significance of dach1 during Xenopus embryogenesis using loss-of-function studies. Reverse transcription-polymerase chain reaction demonstrated the maternal nature of dach1, showing enhanced expression at the neurula stage of development, and morpholino oligonucleotide injection of dach1 induced phenotypic anomalies of microcephaly and reduced body length. Animal cap assays followed by whole-mount in-situ hybridization indicated the perturbed expression of neural and neural crest (NC) markers. Our data suggest the prerequisite functions of dach1 in NC migration during Xenopus embryogenesis. However, the developmental pathways regulated by dach1 during embryogenesis require further elucidation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/embriologia , Xenopus laevis/embriologia , Animais , Desenvolvimento Embrionário , Deleção de Genes , Microcefalia/etiologia , Microcefalia/genética , Microcefalia/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Xenopus laevis/genética
9.
Mol Cell Biochem ; 468(1-2): 97-109, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32185676

RESUMO

Obesity was originally considered a disease endemic to developed countries but has since emerged as a global health problem. Obesity is characterized by abnormal or excessive lipid accumulation (World Health Organization, WHO) resulting from pre-adipocyte differentiation (adipogenesis). The endoplasmic reticulum (ER) produces proteins and cholesterol and shuttles these compounds to their target sites. Many studies have implicated ER stress, indicative of ER dysfunction, in adipogenesis. Reactive oxygen species (ROS) are also known to be involved in pre-adipocyte differentiation. Prx4 specific to the ER lumen exhibits ROS scavenging activity, and we thereby focused on ER-specific Prx4 in tracking changes in adipocyte differentiation and lipid accumulation. Overexpression of Prx4 reduced ER stress and suppressed lipid accumulation by regulating adipogenic gene expression during adipogenesis. Our results demonstrate that Prx4 inhibits ER stress, lowers ROS levels, and attenuates pre-adipocyte differentiation. These findings suggested enhancing the activity of Prx4 may be helpful in the treatment of obesity; the data also support the development of new therapeutic approaches to obesity and obesity-related metabolic disorders.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Estresse do Retículo Endoplasmático/genética , Insulina/farmacologia , Obesidade/metabolismo , Peroxirredoxinas/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Adipogenia/efeitos dos fármacos , Animais , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , Camundongos , Obesidade/genética , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo
10.
Cell Biol Int ; 44(10): 2086-2093, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32639620

RESUMO

Reactive oxygen species (ROS) act as signaling molecules to regulate various cell functions. Numerous studies have demonstrated ROS to be essential for the differentiation of adipocytes. Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes in mammalian cells. Prx2 is present in the cytoplasm and cell membranes and demonstrates ROS scavenging activity. We focused on Prx2 involvement in regulating adipogenesis and lipid accumulation and demonstrated that Prx2 expression was upregulated during adipocyte differentiation. In addition, the silencing of Prx2 (shPrx2) inhibited adipogenesis by modulating adipogenic gene expression, and cell death was enhanced via increased ROS production in shPrx2-3T3-L1 cells. These results demonstrate that shPrx2 triggers adipocyte cell death and weakens adipocyte function via ROS production. Taken together, our data suggest the participation of Prx2 in adipocyte function and differentiation. Our results also imply that the downregulation of Prx2 activity could help prevent obesity. Overall, findings support the development of ROS-based therapeutic solutions for the treatment of obesity and obesity-related metabolic disorders.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo Branco/citologia , Metabolismo dos Lipídeos , Peroxirredoxinas/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Diferenciação Celular , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Espécies Reativas de Oxigênio/metabolismo
11.
Toxicol Appl Pharmacol ; 384: 114797, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676320

RESUMO

Many studies report that cadmium chloride (CdCl2)-induces oxidative stress is associated with male reproductive damage in the testes. CdCl2 also induces mitochondrial fission by increasing dynamin-related protein 1 (Drp1) expression as well as the mitochondria-dependent apoptosis pathway by extracellular signal-regulated kinase (ERK) activation. However, it remains unclear whether mechanisms linked to the mitochondrial damage signal via CdCl2-induced mitogen-activated protein kinases (MAPK) cause damage to spermatocytes. In this study, increased intracellular and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆Ψm) depolarization, and mitochondrial fragmentation and swelling were observed at 5 µM of CdCl2 exposure, resulting in increased apoptotic cell death. Moreover, CdCl2-induced cell death is closely associated with the ERK/Drp1/p38 signaling axis. Interestingly, SB203580, a p38 inhibitor, effectively prevented CdCl2-induced apoptotic cell death by reducing ∆Ψm depolarization and intracellular and mitochondrial ROS levels. Knockdown of Drp1 expression diminished CdCl2-induced mitochondrial deformation and ROS generation and protected GC-2spd cells from apoptotic cell death. In addition, electron microscopy showed that p38 inhibition reduced CdCl2-induced mitochondrial interior damage more effectively than N-acetyl-L-cysteine (NAC), an ROS scavenger; ERK inhibition; or Drp1 knockdown. Therefore, these results demonstrate that inhibition of p38 activity prevents CdCl2-induced apoptotic GC-2spd cell death by reducing depolarization of mitochondrial membrane potential and mitochondrial ROS levels via ERK phosphorylation in a signal pathway different from the CdCl2-induced ERK/Drp1/p38 axis and suggest a therapeutic strategy for CdCl2-induced male infertility.


Assuntos
Cloreto de Cádmio/toxicidade , Imidazóis/farmacologia , Infertilidade Masculina/tratamento farmacológico , Piridinas/farmacologia , Espermatócitos/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Dinaminas/genética , Dinaminas/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Imidazóis/uso terapêutico , Infertilidade Masculina/induzido quimicamente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piridinas/uso terapêutico , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Espermatócitos/citologia , Espermatócitos/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Cell Biol Toxicol ; 35(6): 573-588, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31147869

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder caused by amyloid beta oligomers (AßO), which induce cell death by triggering oxidative stress and endoplasmic reticulum (ER) stress. Oxidative stress is regulated by antioxidant enzymes, including peroxiredoxins. Peroxiredoxins (Prx) are classified into six subtypes, based on their localization and cysteine residues, and protect cells by scavenging hydrogen peroxide (H2O2). Peroxiredoxin 4 (Prx4) is unique in being localized to the ER; however, whether Prx4 protects neuronal cells from AßO-induced toxicity remains unclear, although Prx4 expression is upregulated in AßO-induced oxidative stress and ER stress. In this study, we established HT-22 cells in which Prx4 was either overexpressed or silenced to investigate its role in AßO-induced toxicity. AßO-stimulation of HT-22 cells with overexpressed Prx4 caused decreases in both AßO-induced ROS and ER stress (followed by ER expansion). In contrast, AßO stimulation caused increases in both ROS and ER stress that were notably higher in HT-22 cells with silenced Prx4 expression than in HT-22 cells. Consequently, Prx4 overexpression decreased apoptotic cell death and ameliorated the AßO-induced increase in intracellular Ca2+. Therefore, we conclude that Prx4 has a protective effect against AßO-mediated oxidative stress, ER stress, and neuronal cell death. Furthermore, these results suggest that Prx4 may be a target for preventing AßO toxicity in AD. Graphical abstract .


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peroxirredoxinas/metabolismo , Peptídeos beta-Amiloides/fisiologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Biosci Biotechnol Biochem ; 83(3): 409-416, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30475154

RESUMO

Microglial activation is known to be an important event during innate immunity, but microglial inflammation is also thought to play a role in the etiology of neurodegenerative diseases. Recently, it was reported that autophagy could influence inflammation and activation of microglia. However, little is known about the regulation of autophagy during microglial activation. In this study, we demonstrated that mitochondrial fission-induced ROS can promote autophagy in microglia. Following LPS-induced autophagy, GFP-LC3 puncta were increased, and this was suppressed by inhibiting mitochondrial fission and mitochondrial ROS. Interestingly, inhibition of mitochondrial fission and mitochondrial ROS also resulted in decreased p62 expression, but Beclin1 and LC3B were unaffected. Taken together, these results indicate that ROS induction due to increased LPS-stimulated mitochondrial fission triggers p62 mediated autophagy in microglial cells. Our findings provide the first important clues towards understanding the correlation between mitochondrial ROS and autophagy. Abbreviations: Drp1; Dynamin related protein 1, LPS; Lipopolysaccharide, ROS; Reactive Oxygen Species, GFP; Green Fluorescent Protein, CNS; Central Nervous System, AD; Alzheimer's Disease, PD; Parkinson's Disease, ALIS; Aggresome-like induced structures, iNOS; inducible nitric oxide synthase, Cox-2; Cyclooxygenase-2, MAPK; Mitogen-activated protein kinase; SODs; Superoxide dismutase, GPXs; Glutathione Peroxidase, Prxs; Peroxiredoxins.


Assuntos
Autofagia/efeitos dos fármacos , Dinaminas/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/citologia , Dinâmica Mitocondrial/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Animais , Linhagem Celular , Camundongos , Microglia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533364

RESUMO

The precise mechanism of hepatic cirrhosis remains largely unclear. In particular, a potential regulatory mechanism by which protein kinase C-delta (PKCδ ) affects profibrogenic gene expression involved in hepatic cirrhosis has never been explored. In the present study, we investigated whether PKCδ activation is involved in liver inflammatory fibrosis in both lipopolysaccharide (LPS)-treated RAW 264.7 and CCl4-treated mice. PKCδ was strongly activated by LPS or CCl4 treatment and consequently stimulated nuclear factor (NF)-κB inflammatory response. Interestingly, the activation of PKCδ negatively regulated sirtuin-1 (SIRT1) expression, whereas PKCδ suppression by PKCδ peptide inhibitor V1-1 or siRNA dramatically increased SIRT1 expression. Furthermore, we showed that the negative regulation of PKCδ leads to a decrease in SIRT1 expression. To our knowledge, these results are the first demonstration of the involvement of PKCδ in modulating NF-κB through SIRT1 signaling in fibrosis in mice, suggesting a novel role of PKCδ in inflammatory fibrosis. The level of NF-κB p65 in the nucleus was also negatively regulated by SIRT1 activity. We showed that the inhibition of PKCδ promoted SIRT1 expression and decreased p65 levels in the nucleus through deacetylation. Moreover, the inactivation of PKCδ with V1-1 dramatically suppressed the inflammatory fibrosis, indicating that PKCδ represents a promising target for treating fibrotic diseases like hepatic cirrhosis.


Assuntos
Regulação da Expressão Gênica , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , NF-kappa B/metabolismo , Proteína Quinase C-épsilon/metabolismo , Sirtuína 1/genética , Animais , Células Cultivadas , Ativação Enzimática , Lipopolissacarídeos/efeitos adversos , Cirrose Hepática/patologia , Camundongos , Células RAW 264.7 , Transdução de Sinais , Sirtuína 1/metabolismo
15.
Int J Mol Sci ; 20(18)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500275

RESUMO

Mitochondria are multifunctional cellular organelles that are major producers of reactive oxygen species (ROS) in eukaryotes; to maintain the redox balance, they are supplemented with different ROS scavengers, including mitochondrial peroxiredoxins (Prdxs). Mitochondrial Prdxs have physiological and pathological significance and are associated with the initiation and progression of various cancer types. In this review, we have focused on signaling involving ROS and mitochondrial Prdxs that is associated with cancer development and progression. An upregulated expression of Prdx3 and Prdx5 has been reported in different cancer types, such as breast, ovarian, endometrial, and lung cancers, as well as in Hodgkin's lymphoma and hepatocellular carcinoma. The expression of Prdx3 and Prdx5 in different types of malignancies involves their association with different factors, such as transcription factors, micro RNAs, tumor suppressors, response elements, and oncogenic genes. The microenvironment of mitochondrial Prdxs plays an important role in cancer development, as cancerous cells are equipped with a high level of antioxidants to overcome excessive ROS production. However, an increased production of Prdx3 and Prdx5 is associated with the development of chemoresistance in certain types of cancers and it leads to further complications in cancer treatment. Understanding the interplay between mitochondrial Prdxs and ROS in carcinogenesis can be useful in the development of anticancer drugs with better proficiency and decreased resistance. However, more targeted studies are required for exploring the tumor microenvironment in association with mitochondrial Prdxs to improve the existing cancer therapies and drug development.


Assuntos
Neoplasias/metabolismo , Peroxirredoxina III/metabolismo , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Elementos de Resposta , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima
16.
Biochem Biophys Res Commun ; 501(2): 329-335, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29505793

RESUMO

Celecoxib is a non-steroidal anti-inflammatory drug that selectively inhibits cyclooxygenase-2 and is prescribed for severe pain and inflammation. The excellent therapeutic effects of celecoxib mean that it is frequently used clinically, including for women of child-bearing age. However, the prenatal effects of this compound have not been studied extensively in vertebrates. The present study examined the developmental toxicity of celecoxib using a frog embryo teratogenic assay-Xenopus (FETAX). In addition, we examined its effects on cell migration using co-cultures of human umbilical vein endothelial cells and 10T1/2 cells. These studies revealed that celecoxib induced concentration-dependent mortality and various malformations of the Xenopus internal organs, including gut miscoiling, haemorrhage, and oedema. Celecoxib also downregulated the expression of vascular wall markers (Msr and alpha smooth muscle actin) and other organ-specific markers (Nkx2.5, Cyl104 and IFABP). In vitro co-culture studies revealed that celecoxib inhibited pericyte migration and differentiation into vascular smooth muscle cells. In conclusion, celecoxib was both toxic and teratogenic in Xenopus embryos, where it produced serious heart and vessel malformation by inhibiting vascular wall maturation and vascular network formation.


Assuntos
Celecoxib/toxicidade , Teratogênicos/toxicidade , Xenopus laevis/embriologia , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Biomarcadores , Vasos Sanguíneos/anormalidades , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/embriologia , Celecoxib/administração & dosagem , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião não Mamífero/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Xenopus laevis/fisiologia
17.
J Biol Inorg Chem ; 23(6): 849-860, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29923039

RESUMO

Cadmium (Cd2+) is toxic to living organisms because it causes the malfunction of essential proteins and induces oxidative stress. NADP+-dependent cytosolic isocitrate dehydrogenase (IDH) provides reducing energy to counteract oxidative stress via oxidative decarboxylation of isocitrate. Intriguingly, the effects of Cd2+ on the activity of IDH are both positive and negative, and to understand the molecular basis, we determined the crystal structure of NADP+-dependent cytosolic IDH in the presence of Cd2+. The structure includes two Cd2+ ions, one coordinated by active site residues and another near a cysteine residue. Cd2+ presumably inactivates IDH due to its high affinity for thiols, leading to a covalent enzyme modification. However, Cd2+ also activates IDH by providing a divalent cation required for catalytic activity. Inactivation of IDH by Cd2+ is less effective when the enzyme is activated with Cd2+ than Mg2+. Although reducing agents cannot restore activity following inactivation by Cd2+, they can maintain IDH activity by chelating Cd2+. Glutathione, a cellular sulphydryl reductant, has a moderate affinity for Cd2+, allowing IDH to be activated with residual Cd2+, unlike dithiothreitol, which has a much higher affinity. In the presence of Cd2+-consuming cellular antioxidants, cells must continually supply reductants to protect against oxidative stress. The ability of IDH to utilise Cd2+ to generate NADPH could allow cells to protect themselves against Cd2+.


Assuntos
Cádmio/toxicidade , Quelantes/metabolismo , Citosol/enzimologia , Glutationa/metabolismo , Isocitrato Desidrogenase/metabolismo , NADP/metabolismo , Animais , Calorimetria , Cristalografia por Raios X , Cisteína/química , Ditiotreitol/farmacologia , Ativação Enzimática , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/química , Camundongos , Conformação Proteica , Espectrofotometria Ultravioleta
18.
Toxicol Appl Pharmacol ; 355: 9-17, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29935282

RESUMO

Since elevated osteoclast formation and/or activity by inhibitory responses against pathogens leads to diverse osteolytic bone diseases including periodontitis, inhibition of osteoclast differentiation and bone resorption has been a primary therapeutic strategy. In this study, we investigated the therapeutic potential of a novel benzamide-linked molecule, OCLI-070, for preventing alveolar bone loss in mice with ligature-induced experimental periodontitis. OCLI-070 inhibited osteoclast formation by acting on both early and late stages of differentiation, and attenuated the induction of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and the expression of osteoclast-specific genes. In addition, OCLI-070 significantly suppressed the formation of actin rings and resorption pits. Analysis of the inhibitory action of OCLI-070 showed that it markedly suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced extracellular signal-regulated kinase (ERK) and NF-κB signaling cascades. Moreover, OCLI-070 prevented ligature-induced alveolar bone erosion in mice by suppressing osteoclast formation. These findings demonstrate that OCLI-070 attenuated osteoclast differentiation and function as well as ligature-induced bone erosion by inhibiting RANKL-mediated ERK and NF-κB signaling pathways.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Benzamidas/farmacologia , Fatores de Transcrição NFATC/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Actinas/biossíntese , Animais , Diferenciação Celular/efeitos dos fármacos , Ligadura , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , Periodontite/prevenção & controle , Ligante RANK/biossíntese
19.
Reprod Biol Endocrinol ; 16(1): 79, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111318

RESUMO

BACKGROUND: Mounting evidence shows that ROS regulation by various antioxidants is essential for the expression of enzymes involved in steroidogenesis and maintenance of progesterone production by the corpus luteum (CL). However, the underlying mechanisms of peroxiredoxin 1 (PRDX1), an antioxidant enzyme, in luteal function for progesterone production in mice have not been reported. The aim of this study was to evaluate the functional link between PRDX1 and progesterone production in the CL of Prdx1 knockout (K/O) mice in the functional stage of CL. METHODS: The expression pattern of the unfolded protein response (UPR) signaling pathways, endoplasmic reticulum (ER) stress-induced apoptosis related genes and peroxiredoxins 1 (PRDX1) were investigated by western blotting analysis in CL tissue of 10 weeks mice during functional stage of CL. The protein levels of these genes after ER-stress inducer tunicamycin (Tm), ER-stress inhibitor tauroursodeoxycholic acid (TUDCA) and ROS scavenger, N-acetylcysteine (NAC) stimulation by intraperitoneal (i.p) injection were also investigated in CL tissue of wild type (WT) mice. Finally, we examined progesterone production and UPR signaling related gene expression in CL tissue of Prdx1 K/O mice. RESULTS: We demonstrated that PRDX1 deficiency in the functional stage activates the UPR signaling pathways in response to ER stress-induced apoptosis. Interestingly, CL number, serum progesterone levels, and steroidogenic enzyme expression in Prdx1 K/O mice decreased significantly, compared to those in wild type mice. Levels of UPR signaling pathway markers (GRP78/BIP, P50ATF6, and phosphorylated (p)-eIF2) and ER-stress associated apoptotic factors (CHOP, p-JNK, and cleaved caspase-3) were dramatically increased in the CL tissue of Prdx1 K/O mice. In addition, administration of the NAC, reduced progesterone production and activated ER-stress-induced UPR signaling in the CL tissue obtained from the ovary of Prdx1 K/O mice. Taken together, these results indicated that reduction in serum progesterone levels and activation of ER-stress-induced UPR signaling are restored by NAC injection in the CL of Prdx1 K/O mice. CONCLUSION: These observations provide the first evidence regarding the basic mechanisms connecting PRDX1 and progesterone production in the functional stage of CL.


Assuntos
Corpo Lúteo/metabolismo , Peroxirredoxinas/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , Acetilcisteína/farmacologia , Animais , Apoptose/genética , Colagogos e Coleréticos/farmacologia , Corpo Lúteo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Feminino , Sequestradores de Radicais Livres/farmacologia , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxirredoxinas/genética , Progesterona/sangue , Ácido Tauroquenodesoxicólico/farmacologia
20.
Nutr Neurosci ; 21(7): 520-528, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28448247

RESUMO

Glutamate-induced neurotoxicity is related to excessive oxidative stress accumulation and results in the increase of neuronal cell death. In addition, glutamate has been reported to lead to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.It is well known that Fraxinus rhynchophylla contains a significant level of oleuropein (Ole), which exerts various pharmacological effects. However, the mechanism of neuroprotective effects of Ole is still poorly defined. In this study, we aimed to investigate whether Ole prevents glutamate-induced toxicity in HT-22 hippocampal neuronal cells. The exposure of the glutamate treatment caused neuronal cell death through an alteration of Bax/Bcl-2 expression and translocation of mitochondrial apoptosis-inducing factor (AIF) to the cytoplasm of HT-22 cells. In addition, glutamate induced an increase in dephosphorylation of dynamin-related protein 1 (Drp1), mitochondrial fragmentation, and mitochondrial dysfunction. The pretreatment of Ole decreased Bax expression, increased Bcl-2 expression, and inhibited the translocation of mitochondrial AIF to the cytoplasm. Furthermore, Ole amended a glutamate-induced mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria, regulating the phosphorylation of Drp1 at amino acid residue serine 637. In conclusion, our results show that Ole has a preventive effect against glutamate-induced toxicity in HT-22 hippocampal neuronal cells. Therefore, these data imply that Ole may be an efficient approach for the treatment of neurodegenerative diseases.


Assuntos
Morte Celular/efeitos dos fármacos , Fraxinus/química , Iridoides/farmacologia , Doenças Mitocondriais/tratamento farmacológico , Neurônios/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Dinaminas/genética , Dinaminas/metabolismo , Regulação da Expressão Gênica , Ácido Glutâmico , Hipocampo/citologia , Glucosídeos Iridoides , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/citologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA