Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(9): 8758-8808, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35254051

RESUMO

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.


Assuntos
Ligas , Óxidos , Catálise , Domínio Catalítico , Metais , Oxirredução , Óxidos/química
2.
J Am Chem Soc ; 144(37): 16778-16791, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36054824

RESUMO

The dissociation of H2 is an essential elementary step in many industrial chemical transformations, typically requiring precious metals. Here, we report a hierarchical nanoporous Cu catalyst doped with small amounts of Ti (npTiCu) that increases the rate of H2-D2 exchange by approximately one order of magnitude compared to the undoped nanoporous Cu (npCu) catalyst. The promotional effect of Ti was measured via steady-state H2-D2 exchange reaction experiments under atmospheric pressure flow conditions in the temperature range of 300-573 K. Pretreatment with flowing H2 is required for stable catalytic performance, and two temperatures, 523 and 673 K, were investigated. The experimentally determined H2-D2 exchange rate is 5-7 times greater for npTiCu vs the undoped Cu material under optimized pretreatment and reaction temperatures. The H2 pretreatment leads to full reduction of Cu oxide and partial reduction of surface Ti oxide species present in the as-prepared catalyst as demonstrated using in situ ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The apparent activation energies and pre-exponential factors measured for H2-D2 exchange are substantially different for Ti-doped vs undoped npCu catalysts. Density functional theory calculations suggest that isolated, metallic Ti atoms on the surface of the Cu host can act as the active surface sites for hydrogen recombination. The increase in the rate of exchange above that of pure Cu is caused primarily by a shift in the rate-determining step from dissociative adsorption on Cu to H/D atom recombination on Ti-doped Cu, with the corresponding decrease in activation entropy that it produces.

3.
J Am Chem Soc ; 144(17): 7919-7928, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35471010

RESUMO

Optimizing the use of expensive precious metals is critical to developing sustainable and low-cost processes for heterogeneous catalysis or electrochemistry. Here, we report a synthesis method that yields core-shell Cu-Ru, Cu-Rh, and Cu-Ir nanoparticles with the platinum-group metals segregated on the surface. The synthesis of Cu-Ru, Cu-Rh, and Cu-Ir particles allows maximization of the surface area of these metals and improves catalytic performance. Furthermore, the Cu core can be selectively etched to obtain nanoshells of the platinum-group metal components, leading to a further increase in the active surface area. Characterization of the samples was performed with X-ray absorption spectroscopy, X-ray powder diffraction, and ex situ and in situ transmission electron microscopy. CO oxidation was used as a reference reaction: the three core-shell particles and derivatives exhibited promising catalyst performance and stability after redox cycling. These results suggest that this synthesis approach may optimize the use of platinum-group metals in catalytic applications.


Assuntos
Nanopartículas , Platina , Catálise , Eletroquímica , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Platina/química
4.
J Am Chem Soc ; 141(38): 15145-15152, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31496238

RESUMO

The synthesis of colloidal III-V quantum dots (QDs), particularly of the arsenides and antimonides, has been limited by the lack of stable and available group V precursors. In this work, we exploit accessible InCl3- and pnictogen chloride-oleylamine as precursors to synthesize III-V QDs. Through coreduction reactions of the precursors, we achieve size- and stoichiometry-tunable binary InAs and InSb as well as ternary alloy InAs1-xSbx QDs. On the basis of structural, analytical, optical, and electrical characterization of the QDs and their thin-film assemblies, we study the effects of alloying on their particle formation and optoelectronic properties. We introduce a hydrazine-free hybrid ligand-exchange process to improve carrier transport in III-V QD thin films and realize InAs QD field-effect transistors with electron mobility > 5 cm2/(V s). We demonstrate that III-V QD thin films are promising candidate materials for infrared devices and show InAs1-xSbx QD photoconductors with superior short-wavelength infrared (SWIR) photoresponse than those of the binary QD devices.

5.
J Am Chem Soc ; 141(42): 16548-16552, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31535853

RESUMO

We report a generalized wet-chemical methodology for the synthesis of transition-metal (M)-doped brookite-phase TiO2 nanorods (NRs) with unprecedented wide-range tunability in dopant composition (M = V, Cr, Mn, Fe, Co, Ni, Cu, Mo, etc.). These quadrangular NRs can selectively expose {210} surface facets, which is induced by their strong affinity for oleylamine stabilizer. This structure is well preserved with variable dopant compositions and concentrations, leading to a diverse library of TiO2 NRs wherein the dopants in single-atom form are homogeneously distributed in a brookite-phase solid lattice. This synthetic method allows tuning of dopant-dependent properties of TiO2 nanomaterials for new opportunities in catalysis applications.

6.
Langmuir ; 34(44): 13333-13338, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30350692

RESUMO

Nanoparticle (NP) stability is imperative for commercialization of nanotechnology. In this study, we compare the stability of Au NPs with surfaces functionalized with oleylamine, dodecanethiol, and two dendritic ligands of different generations. Dendrimer ligands provide a significant increase in the chemical stability of Au NPs when analyzed by cyanide-induced NP decomposition as well as an investigation into their colloidal stability at ambient conditions. These results were supported by absorption measurements, transmission electron microscopy, thermogravimetric analysis, nuclear magnetic resonance, and small-angle transmission X-ray scattering and show that dendrimers play a key role in improving the chemical and colloidal stability of NPs.

7.
ACS Nano ; 15(12): 20619-20632, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34780150

RESUMO

Platinum is the primary catalyst for many chemical reactions in the field of heterogeneous catalysis. However, platinum is both expensive and rare. Therefore, it is advantageous to combine Pt with another metal to reduce cost while also enhancing stability. To that end, Pt is often combined with Co to form Co-Pt nanocrystals. However, dynamical restructuring effects that occur during reaction in Co-Pt ensembles can impact catalytic properties. In this study, model Co2Pt3 nanoparticles supported on carbon were characterized during a redox cycle with two in situ approaches, namely, X-ray absorption spectroscopy (XAS) and scanning transmission electron microscopy (STEM) using a multimodal microreactor. The sample was exposed to temperatures up to 500 °C under H2, and then to O2 at 300 °C. Irreversible segregation of Co in the Co2Pt3 particles was seen during redox cycling, and substantial changes of the oxidation state of Co were observed. After H2 treatment, a fraction of Co could not be fully reduced and incorporated into a mixed Co-Pt phase. Reoxidation of the sample increased Co segregation, and the segregated material had a different valence state than in the fresh, oxidized sample. This in situ study describes dynamical restructuring effects in CoPt nanocatalysts at the atomic scale that are crucial to understand in order to improve the design of catalysts used in major chemical processes.

8.
Acta Crystallogr A Found Adv ; 76(Pt 1): 24-31, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31908346

RESUMO

A novel approach for finding and evaluating structural models of small metallic nanoparticles is presented. Rather than fitting a single model with many degrees of freedom, libraries of clusters from multiple structural motifs are built algorithmically and individually refined against experimental pair distribution functions. Each cluster fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles.

9.
ACS Appl Mater Interfaces ; 11(30): 26789-26797, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283175

RESUMO

The development of a suitable catalyst for the oxygen reduction reaction (ORR), the cathode reaction of proton exchange membrane fuel cells (PEMFC), is necessary to push this technology toward widespread adoption. There have been substantial efforts to utilize bimetallic Pt-M alloys that adopt the ordered face-centered tetragonal (L10) phase in order to reduce the usage of precious metal, enhance the ORR performance, and improve catalyst stability. In this work, monodisperse Pt-Co nanocrystals (NCs) with well-defined size (4-5 nm) and cobalt composition (25-75 at%) were synthesized via colloidal synthesis. The transformation from the chemically disordered A1 (face-centered cubic, fcc) to the L10 phase was achieved via thermal annealing using both a conventional oven and a rapid thermal annealing process. The structure of the Pt-Co catalysts was characterized by a variety of techniques, including transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy in high-angle annular dark-field scanning transmission electron microscopy (STEM-EDS), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of annealing temperature on the composition-dependent degree of ordering and subsequent effect on ORR activity is described. This work provides insights regarding the optimal spatial distribution of elements at the atomic level to achieve enhanced ORR activity and stability.

10.
ACS Nano ; 13(5): 5712-5719, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31050884

RESUMO

Substitutional doping is a potentially powerful technique to control the properties of nanocrystal (NC) superlattices (SLs). However, not every NC can be substituted into any lattice, as the NCs have to be close in size and shape, limiting the application of substitutional doping. Here we show that this limitation can be overcome by employing ligands of various size. We show that small NCs with long ligands can be substituted into SLs of big NCs with short ligands. Furthermore, we show that shape differences can also be overcome and that cubes can substitute spheres when both are coated with long ligands. Finally, we use the NC effective ligand size, softness, and effective overall size ratio to explain observed doping behaviors.

11.
ACS Nano ; 13(2): 2324-2333, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30707549

RESUMO

Colloidal semiconductor nanocrystals (NCs) are a promising materials class for solution-processable, next-generation electronic devices. However, most high-performance devices and circuits have been achieved using NCs containing toxic elements, which may limit their further device development. We fabricate high mobility CuInSe2 NC field-effect transistors (FETs) using a solution-based, post-deposition, sequential cation exchange process that starts with electronically coupled, thiocyanate (SCN)-capped CdSe NC thin films. First Cu+ is substituted for Cd2+ transforming CdSe NCs to Cu-rich Cu2Se NC films. Next, Cu2Se NC films are dipped into a Na2Se solution to Se-enrich the NCs, thus compensating the Cu-rich surface, promoting fusion of the Cu2Se NCs, and providing sites for subsequent In-dopants. The liquid-coordination-complex trioctylphosphine-indium chloride (TOP-InCl3) is used as a source of In3+ to partially exchange and n-dope CuInSe2 NC films. We demonstrate Al2O3-encapsulated, air-stable CuInSe2 NC FETs with linear (saturation) electron mobilities of 8.2 ± 1.8 cm2/(V s) (10.5 ± 2.4 cm2/(V s)) and with current modulation of 105, comparable to that for high-performance Cd-, Pb-, and As-based NC FETs. The CuInSe2 NC FETs are used as building blocks of integrated inverters to demonstrate their promise for low-cost, low-toxicity NC circuits.

12.
ACS Nano ; 12(9): 9091-9100, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30148956

RESUMO

Nanocrystal (NC) solids are an exciting class of materials, whose physical properties are tunable by choice of the NCs as well as the strength of the interparticle coupling. One can consider these NCs as "artificial atoms" in analogy to the formation of condensed matter from atoms. Akin to atomic doping, the doping of a semiconducting NC solid with impurity NCs can drastically alter its electronic properties. A high degree of complexity is possible in these artificial structures by adjusting the size, shape, and composition of the building blocks, which enables "designer" materials with targeted properties. Here, we present the doping of the PbSe NC solids with a series of Au xAg1- x alloy nanoparticles (NPs). A combination of temperature-dependent electrical conductance and Seebeck coefficient measurements and room-temperature Hall effect measurements demonstrates that the incorporation of metal NPs both modifies the charge carrier density of the NC solids and introduces energy barriers for charge transport. These studies point to charge carrier injection from the metal NPs into the PbSe NC matrix. The charge carrier density and charge transport dynamics in the doped NC solids are adjustable in a wide range by employing the Au xAg1- x NP with different Au:Ag ratio as dopants. This doping strategy could be of great interest for thermoelectric applications taking advantage of the energy filtering effect introduced by the metal NPs.

13.
Nanoscale ; 9(37): 13922-13928, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28905962

RESUMO

The collective magnetic properties of nanoparticle (NP) solid films are greatly affected by inter-particle dipole-dipole interactions and therefore the proximity of the neighboring particles. In this study, a series of dendritic ligands (generations 0 to 3, G0-G3) have been designed and used to cover the surface of magnetic NPs to control the spacings between the NP components in single lattices. The dendrons of different generations introduced here were based on the 2,2-bis(hydroxymethyl)propionic acid (Bis-MPA) scaffold and equipped with an appropriate surface binding group at one end and several fatty acid segments at the other extremity. The surface of the NPs was then modified by partial ligand exchange between the primary stabilizing surfactants and the new dendritic wedges. It was shown that this strategy permitted very precise tuning of inter-particle spacings in the range of 2.9-5.0 nm. As expected, the increase in the inter-particle spacings reduced the dipole-dipole interactions between magnetic NPs and therefore allowed changes in their magnetic permeability. The dendron size and inter-particle distance dependence was studied to reveal the dendritic effect and identify the optimal geometry and generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA