Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481599

RESUMO

Piezo channels are mechanosensitive ion channels. Piezo1 is primarily expressed in nonsensory tissues, whereas Piezo2 is predominantly found in sensory tissues, including dorsal root ganglion (DRG) neurons. However, a recent study demonstrated the intracellular calcium response to Yoda1, a selective Piezo1 agonist, in trigeminal ganglion (TG) neurons. Herein, we investigate the expression of Piezo1 mRNA and protein in mouse and human DRG neurons and the activation of Piezo1 via calcium influx by Yoda1. Yoda1 induces inward currents mainly in small- (< 25 µm) and medium-sized (25-35 µm) mouse DRG neurons. The Yoda1-induced Ca2+ response is inhibited by cationic channel blocker, ruthenium red and cationic mechanosensitive channel blocker, GsMTx4. To confirm the specific inhibition of Piezo1, we performed an adeno-associated virus serotype 2/5 (AAV2/5)-mediated delivery of short hairpin RNA (shRNA) into mouse DRG neurons. AAV2/5 transfection downregulates piezo1 mRNA expression and reduces Ca2+ response by Yoda1. Piezo1 also shows physiological functions with transient receptor potential vanilloid 1 (TRPV1) in the same DRG neurons and is regulated by the activation of TRPV1 in mouse DRG sensory neurons. Overall, we found that Piezo1 has physiological functions in DRG neurons and that TRPV1 activation inhibits an inward current induced by Yoda1.


Assuntos
Gânglios Espinais/metabolismo , Canais Iônicos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Dependovirus/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Pirazinas/farmacologia , RNA Interferente Pequeno/metabolismo , Canais de Cátion TRPV/metabolismo , Tiadiazóis/farmacologia , Gânglio Trigeminal/metabolismo
2.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071917

RESUMO

The tooth has an unusual sensory system that converts external stimuli predominantly into pain, yet its sensory afferents in teeth demonstrate cytochemical properties of non-nociceptive neurons. This review summarizes the recent knowledge underlying this paradoxical nociception, with a focus on the ion channels involved in tooth pain. The expression of temperature-sensitive ion channels has been extensively investigated because thermal stimulation often evokes tooth pain. However, temperature-sensitive ion channels cannot explain the sudden intense tooth pain evoked by innocuous temperatures or light air puffs, leading to the hydrodynamic theory emphasizing the microfluidic movement within the dentinal tubules for detection by mechanosensitive ion channels. Several mechanosensitive ion channels expressed in dental sensory systems have been suggested as key players in the hydrodynamic theory, and TRPM7, which is abundant in the odontoblasts, and recently discovered PIEZO receptors are promising candidates. Several ligand-gated ion channels and voltage-gated ion channels expressed in dental primary afferent neurons have been discussed in relation to their potential contribution to tooth pain. In addition, in recent years, there has been growing interest in the potential sensory role of odontoblasts; thus, the expression of ion channels in odontoblasts and their potential relation to tooth pain is also reviewed.


Assuntos
Canais Iônicos/genética , Dor/genética , Proteínas Serina-Treonina Quinases/genética , Canais de Cátion TRPM/genética , Dente/fisiopatologia , Polpa Dentária/crescimento & desenvolvimento , Polpa Dentária/fisiopatologia , Dentina/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Odontoblastos/metabolismo , Odontoblastos/patologia , Dor/fisiopatologia , Dente/crescimento & desenvolvimento , Gânglio Trigeminal/fisiopatologia
3.
J Neurosci ; 32(16): 5678-5687, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22514329

RESUMO

MicroRNAs (miRNAs) have recently come to be viewed as critical players that modulate a number of cellular features in various biological systems including the mature CNS by exerting regulatory control over the stability and translation of mRNAs. Despite considerable evidence for the regulatory functions of miRNAs, the identities of the miRNA species that are involved in the regulation of synaptic transmission and plasticity and the mechanisms by which these miRNAs exert functional roles remain largely unknown. In the present study, the expression of microRNA-188 (miR-188) was found to be upregulated by the induction of long-term potentiation (LTP). The protein level of neuropilin-2 (Nrp-2), one of the possible molecular targets for miR-188, was decreased during LTP induction. We also confirmed that the luciferase activity of the 3'-UTR of Nrp-2 was diminished by treatment with a miR-188 oligonucleotide but not with a scrambled miRNA oligonucleotide. Nrp-2 serves as a receptor for semaphorin 3F, which is a negative regulator of spine development and synaptic structure. In addition, miR-188 specifically rescued the reduction in dendritic spine density induced by Nrp-2 expression in hippocampal neurons from rat primary culture. Furthermore, miR-188 counteracted the decrease in the miniature EPSC frequency induced by Nrp-2 expression in hippocampal neurons from rat primary culture. These findings suggest that miR-188 serves to fine-tune synaptic plasticity by regulating Nrp-2 expression.


Assuntos
Dendritos/fisiologia , Regulação para Baixo/fisiologia , MicroRNAs/metabolismo , Plasticidade Neuronal/fisiologia , Neuropilina-2/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Células Cultivadas , Espinhas Dendríticas/metabolismo , Regulação para Baixo/genética , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Antagonistas GABAérgicos/farmacologia , Perfilação da Expressão Gênica , Glicina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Plasticidade Neuronal/genética , Neurônios/citologia , Neuropilina-2/genética , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estricnina/farmacologia , Sinapses/genética , Transmissão Sináptica/genética , Transfecção
4.
J Nanosci Nanotechnol ; 13(3): 2236-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23755672

RESUMO

A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

5.
J Pharmacol Sci ; 119(2): 186-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22790317

RESUMO

In this study, we explored whether phloroglucinol (1,3,5-trihydroxybenzene) exerts protective effects against oxidative stress–induced cytotoxicity in SH-SY5Y cells, a neuroblastoma cell line. The central nervous system is especially vulnerable to oxidative stress because the brain consumes large amounts of energy to perform its complicated functions, but contains a lower level of anti-oxidant enzymes compared with other peripheral tissues. In SH-SY5Y cultures, pretreatment with 10 μg/ml of phloroglucinol attenuates the cytotoxicity of hydrogen peroxide. In addition, when assessed with 2′,7′-dichlorofluorescein diacetate dye, the increase in reactive oxygen species (ROS) induced by hydrogen peroxide was significantly reduced by pretreatment with phloroglucinol. ROS is known to cause lipid peroxidation of the cell membranes, the carbonylation of intracellular proteins, and DNA damage, which can lead to various cellular dysfunctions and eventually cellular death. We found that pretreatment with phloroglucinol down-regulated the levels of 8-isoprostane, protein carbonylation, and 8-hydroxy deoxyguanine caused by hydrogen peroxide treatment in SH-SY5Y cells. These results indicate that phloroglucinol exerts protective effects against oxidative stress-induced cell damage in SH-SY5Y cells.


Assuntos
Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Floroglucinol/farmacologia , 8-Hidroxi-2'-Desoxiguanosina , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Neuroscience ; 495: 58-73, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643248

RESUMO

Feeding behaviors are closely associated with chronic pain in adult rodents. Our recent study revealed that 2 h refeeding after 24 h fasting (i.e., refeeding) attenuates pain behavior under chronic inflammatory pain conditions. However, while brain circuits mediating fasting-induced analgesia have been identified, the underlying mechanism of refeeding-induced analgesia is still elusive. Herein, we demonstrate that the neural activities in the nucleus accumbens shell (NAcS) and anterior insular cortex (aIC) were increased in a modified Complete Freund's Adjuvant (CFA)-induced chronic inflammatory pain condition, which was reversed by refeeding. We also found that refeeding reduced the enhanced excitability of aICCaMKII-NAcSD2R projecting neurons in this CFA model. Besides, chemogenetic inhibition of aICCaMKII-NAcSD2R neural circuit suppressed chronic pain behavior while activation of this circuit reversed refeeding-induced analgesia. Thus, the present study suggests that aICCaMKII-NAcSD2R neural circuit mediates refeeding-induced analgesia, thereby serving as a potential therapeutic target to manage chronic pain.


Assuntos
Analgesia , Dor Crônica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dor Crônica/metabolismo , Adjuvante de Freund/toxicidade , Humanos , Núcleo Accumbens/metabolismo , Manejo da Dor
7.
Neurosci Bull ; 38(4): 373-385, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35294713

RESUMO

Mitochondrial reactive oxygen species (mROS) that are overproduced by mitochondrial dysfunction are linked to pathological conditions including sensory abnormalities. Here, we explored whether mROS overproduction induces itch through transient receptor potential canonical 3 (TRPC3), which is sensitive to ROS. Intradermal injection of antimycin A (AA), a selective inhibitor of mitochondrial electron transport chain complex III for mROS overproduction, produced robust scratching behavior in naïve mice, which was suppressed by MitoTEMPO, a mitochondria-selective ROS scavenger, and Pyr10, a TRPC3-specific blocker, but not by blockers of TRPA1 or TRPV1. AA activated subsets of trigeminal ganglion neurons and also induced inward currents, which were blocked by MitoTEMPO and Pyr10. Besides, dry skin-induced chronic scratching was relieved by MitoTEMPO and Pyr10, and also by resveratrol, an antioxidant. Taken together, our results suggest that mROS elicit itch through TRPC3, which may underlie chronic itch, representing a potential therapeutic target for chronic itch.


Assuntos
Mitocôndrias , Prurido , Animais , Antioxidantes/farmacologia , Camundongos , Prurido/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Canal de Cátion TRPA1
8.
Neuroreport ; 32(15): 1269-1277, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34494992

RESUMO

OBJECTIVES: Feeding behavior is known to have potential to alleviate pain. We recently demonstrated that both 24 h fasting and 2 h refeeding (food intake after 24 h fasting) induce analgesia in inflammatory pain conditions via different brain mechanisms. However, brain structures that distinctly involved fasting- and refeeding-induced analgesia is still unknown. Hence, this study is aimed to reveal brain structures mediating fasting- and refeeding-induced analgesia. METHODS: Mice were given intraplantar (i.pl.) injection of formalin and complete Freund's adjuvant into the left hind paw to induce acute and chronic inflammatory pain, respectively. We examined changes in c-Fos expression with 24 h fasting and 2 h refeeding under acute and chronic inflammatory pain conditions in the contralateral brain. RESULTS: Under acute pain condition, c-Fos expression changed with fasting in the anterior cingulate cortex (ACC), central amygdala (CeA), lateral hypothalamus (LH) and nucleus accumbens core (NAcC). Refeeding changed c-Fos expression in the CeA, LH and lateral parabrachial nucleus (lPBN). On the other hand, under chronic inflammatory pain condition, c-Fos expression changed with fasting in the lPBN, medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAcS) while refeeding changed c-Fos expression in the anterior insular cortex, lPBN, mPFC and NAcS. CONCLUSION: The present results show that brain regions that participated in the fasting- and refeeding-induced analgesia were completely different in acute and chronic inflammatory pain conditions. Also, refeeding recruits more brain regions under chronic inflammatory pain conditions compared to the acute inflammatory pain condition. Collectively, our findings provide novel insights into brain regions involved in fasting- and refeeding-induced analgesia, which can be potential neural circuit-based targets for the development of novel therapeutics.


Assuntos
Encéfalo/metabolismo , Comportamento Alimentar/fisiologia , Inflamação/metabolismo , Dor/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Ingestão de Alimentos/fisiologia , Inflamação/genética , Camundongos , Neurônios/metabolismo , Dor/genética
9.
Front Cell Dev Biol ; 9: 611773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748103

RESUMO

Transient receptor potential (TRP) channels are transmembrane protein complexes that play important roles in the physiology and pathophysiology of both the central nervous system (CNS) and the peripheral nerve system (PNS). TRP channels function as non-selective cation channels that are activated by several chemical, mechanical, and thermal stimuli as well as by pH, osmolarity, and several endogenous or exogenous ligands, second messengers, and signaling molecules. On the pathophysiological side, these channels have been shown to play essential roles in the reproductive system, kidney, pancreas, lung, bone, intestine, as well as in neuropathic pain in both the CNS and PNS. In this context, TRP channels have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and epilepsy. Herein, we focus on the latest involvement of TRP channels, with a special emphasis on the recently identified functional roles of TRP channels in neurological disorders related to the disruption in calcium ion homeostasis.

10.
Front Mol Neurosci ; 14: 643483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220447

RESUMO

Riboflavin, also known as vitamin B2, isfound in foods and is used as a dietary supplement. Its deficiency (also called ariboflavinosis) results in some skin lesions and inflammations, such as stomatitis, cheilosis, oily scaly skin rashes, and itchy, watery eyes. Various therapeutic effects of riboflavin, such as anticancer, antioxidant, anti-inflammatory, and anti-nociceptive effects, are well known. Although some studies have identified the clinical effect of riboflavin on skin problems, including itch and inflammation, its underlying mechanism of action remains unknown. In this study, we investigated the molecular mechanism of the effects of riboflavin on histamine-dependent itch based on behavioral tests and electrophysiological experiments. Riboflavin significantly reduced histamine-induced scratching behaviors in mice and histamine-induced discharges in single-nerve fiber recordings, while it did not alter motor function in the rotarod test. In cultured dorsal root ganglion (DRG) neurons, riboflavin showed a dose-dependent inhibitory effect on the histamine- and capsaicin-induced inward current. Further tests wereconducted to determine whether two endogenous metabolites of riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have similar effects to those of riboflavin. Here, FMN, but not FAD, significantly inhibited capsaicin-induced currents and itching responses caused by histamine. In addition, in transient receptor potential vanilloid 1 (TRPV1)-transfected HEK293 cells, both riboflavin and FMN blocked capsaicin-induced currents, whereas FAD did not. These results revealed that riboflavin inhibits histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how riboflavin exerts antipruritic effects and suggests that it might be a useful drug for the treatment of histamine-dependent itch.

11.
Biomolecules ; 10(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167484

RESUMO

Local anesthetics (LAs) can completely block nociception by inhibiting voltage-gated sodium channels (VGSCs), and thus, blocking action potentials (APs) within sensory neurons. As one of the several LAs, eugenol is used for dental pain treatment. It reportedly features multiple functions in regulating diverse ion channels. This study aimed to investigate the long-lasting analgesic effect of eugenol alone, as well as that of the combination of eugenol as a noxious-heat-sensitive transient receptor potential vanilloid 1 (TRPV1) channel agonist and a permanently charged sodium channel blocker (QX-314), on neuronal excitability in trigeminal ganglion (TG) neurons. Eugenol alone increased inward current in a dose-dependent manner in capsaicin-sensitive TG neurons. Eugenol also inhibited the VGSC current and AP. These effects were reversed through wash-out. The combination of eugenol and QX-314 was evaluated in the same manner. The combination completely inhibited the VGSC current and AP. However, these effects were not reversed and were continuously blocked even after wash-out. Taken together, our results suggest that, in contrast to the effect of eugenol alone, the combination of eugenol and QX-314 irreversibly and selectively blocked VGSCs in TG neurons expressing TRPV1.


Assuntos
Eugenol/farmacologia , Lidocaína/análogos & derivados , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gânglio Trigeminal/citologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Interações Medicamentosas , Lidocaína/farmacologia , Masculino , Neurônios/citologia , Nociceptividade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
12.
Neurochem Res ; 34(6): 1030-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18987971

RESUMO

A large amount of genetic information is devoted to brain development. In this study, the cortical development in rats at eight developmental time points (four embryonic [E15, E16, E18, E20] and four postnatal [P0, P7, P14, P21]) was studied using a rat brain 10K cDNA microarray. Significant differential expression was observed in 467 of the 9,805 genes represented on the microarray. Two major Gene Ontology classes-cell differentiation and cell-cell signaling-were found to be important for cortical development. Genes for ribosomal proteins, heterogeneous nuclear ribonucleoproteins, and tubulin proteins were up-regulated in the embryonic stage, coincidently with extensive proliferation of neural precursor cells as the major component of the cerebral cortex. Genes related to neurogenesis, including neurite regeneration, neuron development, and synaptic transmission, were more active in adulthood, when the cerebral cortex reached maturity. The many developmentally modulated genes identified by this approach will facilitate further studies of cortical functions.


Assuntos
Córtex Cerebral/metabolismo , DNA Complementar/biossíntese , Perfilação da Expressão Gênica , Animais , Animais Recém-Nascidos , Comunicação Celular , Diferenciação Celular , Proliferação de Células , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Proteínas Ribossômicas/biossíntese , Tubulina (Proteína)/biossíntese
13.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 1): o66, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21580167

RESUMO

In the title compound, C(17)H(20)N(2)O(3), the morpholine ring is in a slightly distorted chair form. The crystal structure is stabilized by an inter-molecular O-H⋯O hydrogen bond between the H atom of the hydroxyl group and the O atom of a neighbouring carbonyl group. A weak inter-molecular C-H⋯π inter-action is also present.

14.
Cell Rep ; 28(12): 3131-3143.e5, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533036

RESUMO

The canonical cortical microcircuit has principally been defined by interlaminar excitatory connections among the six layers of the neocortex. However, excitatory neurons in layer 6 (L6), a layer whose functional organization is poorly understood, form relatively rare synaptic connections with other cortical excitatory neurons. Here, we show that the vast majority of parvalbumin inhibitory neurons in a sublamina within L6 send axons through the cortical layers toward the pia. These interlaminar inhibitory neurons receive local synaptic inputs from both major types of L6 excitatory neurons and receive stronger input from thalamocortical afferents than do neighboring pyramidal neurons. The distribution of these interlaminar interneurons and their synaptic connectivity further support a functional subdivision within the standard six layers of the cortex. Positioned to integrate local and long-distance inputs in this sublayer, these interneurons generate an inhibitory interlaminar output. These findings call for a revision to the canonical cortical microcircuit.


Assuntos
Interneurônios/metabolismo , Neocórtex/metabolismo , Inibição Neural , Células Piramidais/metabolismo , Sinapses/metabolismo , Animais , Interneurônios/citologia , Camundongos , Camundongos Transgênicos , Neocórtex/citologia , Células Piramidais/citologia , Sinapses/genética
15.
Exp Mol Med ; 40(2): 208-19, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18446059

RESUMO

Kaempferol is the major flavonol in green tea and exhibits many biomedically useful properties such as antioxidative, cytoprotective and anti-apoptotic activities. To elucidate its effects on the skin, we investigated the transcriptional profiles of kaempferol-treated HaCaT cells using cDNA microarray analysis and identified 147 transcripts that exhibited significant changes in expression. Of these, 18 were up-regulated and 129 were down-regulated. These transcripts were then classified into 12 categories according to their functional roles: cell adhesion/cytoskeleton, cell cycle, redox homeostasis, immune/defense responses, metabolism, protein biosynthesis/modification, intracellular transport, RNA processing, DNA modification/ replication, regulation of transcription, signal transduction and transport. We then analyzed the promoter sequences of differentially-regulated genes and identified over-represented regulatory sites and candidate transcription factors (TFs) for gene regulation by kaempferol. These included c-REL, SAP-1, Ahr-ARNT, Nrf-2, Elk-1, SPI-B, NF-kappaB and p65. In addition, we validated the microarray results and promoter analyses using conventional methods such as real-time PCR and ELISA-based transcription factor assay. Our microarray analysis has provided useful information for determining the genetic regulatory network affected by kaempferol, and this approach will be useful for elucidating gene-phytochemical interactions.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Quempferóis/farmacologia , Queratinócitos/efeitos dos fármacos , Fatores de Transcrição/fisiologia , Transcrição Gênica/efeitos dos fármacos , Sequência de Bases , Linhagem Celular , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Humanos , Queratinócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Iran J Pharm Res ; 16(2): 763-770, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979330

RESUMO

Herbal nanoparticles gain lot of attention because of their pharmaceutical importance. The present study reports the eco-friendly synthesis, characterization and their tyrosinase activity of silver nanoparticles (AgNPs) using aqueous extract of Bidens frondosa. The appearance of brown color indicated the formation of B. frondosa AgNPs. The Formation of AgNPs was confirmed by UV-Vis spectroscopy, FTIR, FESEM and EDS analysis. The formation of herbal AgNPs of size ranging 20-70 nm further was assured by energy dispersive X-ray spectroscopy (EDS) and field emission scanning electron microscopy (FESEM). The mushroom tyrosinase inhibitory activity of synthesized AgNPs was evaluated. Nanoparticles were found to have significant higher tyrosinase inhibitory activity compared to control. The IC50 values of crude extract, AgNP and Kojic acid were found to be 9, 15, and 2.37 µg/mL, respectively. AgNPs of B. frondosa may be considered as potential candidate for the production of medical and cosmetic products.

17.
PLoS One ; 11(6): e0157202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258156

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0153298.].

18.
PLoS One ; 11(4): e0153298, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27071011

RESUMO

Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/metabolismo , Comportamento Animal/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Valproico/efeitos adversos , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Mutação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Comportamento Social
19.
Sci Rep ; 6: 34433, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708404

RESUMO

MicroRNAs have emerged as key factors in development, neurogenesis and synaptic functions in the central nervous system. In the present study, we investigated a pathophysiological significance of microRNA-188-5p (miR-188-5p) in Alzheimer's disease (AD). We found that oligomeric Aß1-42 treatment diminished miR-188-5p expression in primary hippocampal neuron cultures and that miR-188-5p rescued the Aß1-42-mediated synapse elimination and synaptic dysfunctions. Moreover, the impairments in cognitive function and synaptic transmission observed in 7-month-old five familial AD (5XFAD) transgenic mice, were ameliorated via viral-mediated expression of miR-188-5p. miR-188-5p expression was down-regulated in the brain tissues from AD patients and 5XFAD mice. The addition of miR-188-5p rescued the reduction in dendritic spine density in the primary hippocampal neurons treated with oligomeric Aß1-42 and cultured from 5XFAD mice. The reduction in the frequency of mEPSCs was also restored by addition of miR-188-5p. The impairments in basal fEPSPs and cognition observed in 7-month-old 5XFAD mice were ameliorated via the viral-mediated expression of miR-188-5p in the hippocampus. Furthermore, we found that miR-188 expression is CREB-dependent. Taken together, our results suggest that dysregulation of miR-188-5p expression contributes to the pathogenesis of AD by inducing synaptic dysfunction and cognitive deficits associated with Aß-mediated pathophysiology in the disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Disfunção Cognitiva , Hipocampo , MicroRNAs , Fragmentos de Peptídeos , Sinapses , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/genética , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/biossíntese , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia
20.
Pain ; 157(4): 964-976, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26761385

RESUMO

Microglial cells, the resident immune cells of the spinal cord, become activated in response to peripheral nerve injury. Microglia activation contributes to the development of neuropathic pain. Here we employed microarray analysis of individually collected pools of 10 spinal microglia cells to identify changes of levels and cell-to-cell expression variance of microglial genes during their activation after peripheral nerve injury. The analysis of microglia on postoperative day 1 (POD1) identified miR-29c as a critical factor for microglial activation and the development of neuropathic pain. Early POD1 microglia exhibited a very distinct expression profile compared to late POD7 microglia, possibly leading to the transition from initiation to maintenance of neuropathic pain. We found sample variance patterns that were consistent with the hypothesis that microglia were highly heterogeneous at the level of individual cells, and variation analysis identified 56 microglial genes potentially linked to the maintenance of neuropathic pain which included Gria1. This study provides insights into spinal microglial biology and reveals novel microglial targets for the treatment of neuropathic pain.


Assuntos
Microglia/metabolismo , Neuralgia/genética , Neuralgia/fisiopatologia , Medula Espinal/fisiopatologia , Nervos Espinhais/lesões , Animais , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA