RESUMO
This study investigated the potential of 2'-Fucosyllactose (2'-FL) and galactooligosaccharides (GOS) combinations as a novel and cost-effective substitute for human milk oligosaccharides (HMOs) in promoting gut health and reducing inflammation. In vitro studies using Caco-2 cells showed that 2'-FL and GOS combinations (H1: GOS:2'-FL ratio of 1.8:1; H2: ratio of 3.6:1) reduced lipopolysaccharide-induced inflammation by decreasing pro-inflammatory markers, while individual treatments had no significant effects. In a mouse model of dextran sulfate sodium (DSS)-induced colitis, combined 2'-FL and GOS supplementation alleviated symptoms, improved gut permeability, and enhanced intestinal structure, with the GH1 group (H1 combo with DSS) being the most effective. 2'-FL and GOS combinations also enhanced short-chain fatty acid production in infant fecal batch fermentation and mouse fecal analysis, with GH1 showing the most promising results. GH1 supplementation altered gut microbiota in mice with DSS-induced colitis, promoting microbial diversity and a more balanced Firmicutes to Bacteroidota ratio. Infant formula products (IFPs) containing 2'-FL and GOS combinations (IFP2: 174 mg GOS and 95 mg 2'-FL per 14 g serving, 1.8:1 ratio; IFP3: 174 mg GOS and 48 mg 2'-FL per 14 g serving, 3.6:1 ratio) demonstrated gastrointestinal protective and anti-inflammatory properties in a coculture model of Caco-2 and THP-1 cells. These findings suggest that 2'-FL and GOS combinations have potential applications in advanced infant formulas and supplements to promote gut health and reduce inflammation.
RESUMO
BACKGROUND: Advanced glycation end-products (AGEs) are proteins or lipids that have been glycated nonenzymatically by reducing sugars and their derivatives such as methylglyoxal. AGEs are known to cause inflammation, oxidative stress, and diseases in the human body. The toxic effects of AGEs and their structures on the origin of the protein being modified have not been well studied. METHODS AND RESULTS: Five different types of AGEs: AGE1 (glucose-derived), AGE2 (glyceraldehyde-derived), AGE3 (glycolaldehyde-derived), AGE4 (methylglyoxal-derived), and AGE5 (glyoxal-derived); were used to examine the effect of AGEs on HepG2 cells. AGE2 through 5 increase the production of reactive oxygen species (ROS) in liver cells, an initiating factor for apoptosis. At the mRNA and protein levels, AGE5 treatment showed the greatest increase in expression of apoptosis-related factors such as Bax, p53, and Caspase 3. Quantitative analysis revealed that Nε-carboxymethyl-lysine (CML) and glyoxal-lysine dimer (GOLD) were the important types of AGE5. The ROS generation and the expression of apoptotic factors both increased when cells were treated with CML and GOLD. CONCLUSION: These findings suggest that AGE5 treatment activates the apoptosis-related gene expression in hapatocytes, with CML and GOLD as potential major AGE compounds.
Assuntos
Glioxal , Lisina , Humanos , Glioxal/farmacologia , Glioxal/química , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Aldeído Pirúvico/farmacologia , Espécies Reativas de Oxigênio , Proteínas , Apoptose , Hepatócitos/metabolismo , Expressão GênicaRESUMO
Per- and polyfluoroalkyl substances (PFASs) and perfluoroalkyl ether carboxylic acids (PFECAs) are organic chemicals that are widely used in the manufacture of a wide range of human-made products. Many monitoring findings revealed the presence of PFASs and PFECAs in numerous environmental sources, including water, soil, and air, which drew more attention to both chemicals. Because of their unknown toxicity, the discovery of PFASs and PFECAs in a variety of environmental sources was viewed as a cause for concern. In the present study, male mice were given orally one of the typical PFASs, perfluorooctanoic acid (PFOA), and one of the representative PFECAs, hexafluoropropylene oxide-dimer acid (HFPO-DA). The liver index showing hepatomegaly rose significantly after 90 d of exposure to PFOA and HFPO-DA, respectively. While sharing similar suppressor genes, both chemicals demonstrated unique hepatotoxic mechanisms. In different ways, these two substances altered the expression of hepatic stress-sensing genes as well as the regulation of nuclear receptors. Not only are bile acid metabolism-related genes in the liver altered, but cholesterol metabolism-related genes as well. These results indicate that PFOA and HFPO-DA both cause hepatotoxicity and bile acid metabolism impairment with distinct mechanisms.
Assuntos
Fluorocarbonos , Humanos , Camundongos , Masculino , Animais , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Fígado/metabolismo , Ácidos e Sais BiliaresRESUMO
BACKGROUND: A mechanical block in the elbow due to osteophytes in the olecranon fossa is a common clinical symptom for elbow stiffness. PURPOSE/HYPOTHESIS: This study aims to understand the biomechanical characteristics or changes in the stiff elbow in the resting (or neutral) and swing position of the arm using a cadaveric model. The hypotheses included the following: (1) a difference exists in the articular contact pressure of the elbow by comparing the non-stiff and stiff models in in vivo studies; (2) the degree of stiffness would affect the increase of the joint loading of the elbow. STUDY DESIGN: Controlled laboratory study, cadaveric study. METHODS: Eight fresh-frozen specimens from individuals of both sexes were included in the biomechanical study. The specimen was mounted on a custom-designed jig system with gravity-assisted muscle contracture to mimic the elbow in a standing position. The elbow was tested in two conditions (the resting and passive swing). Contact pressure was recorded for three seconds in the resting position, which was the neutral position of the humerus. By dropping the forearm from 90° of the elbow flexion, the passive swing was performed. The specimens were tested sequentially in three stages of stiffness (stage 0, no stiffness; stage 1, 30° of extension limitation; and stage 2, 60° of extension limitation). After data collection was completed in stage 0, a stiff model was sequentially created for each stage. The stiff model of the elbow was created by blocking the olecranon by inserting a 2.0 K-wire into the olecranon fossa horizontally with the intercondylar axis. RESULTS: The mean contact pressures were 279 ± 23, 302 ± 6, and 349 ± 23 kPa in stages 0, 1, and 2, respectively. The increases in the mean contact pressure in stages 2 versus 0 were significant (P < 0.0001). The mean contact pressures were 297 ± 19, 310 ± 14, and 326 ± 13 kPa in stages 0, 1, and 2, respectively. The peak contact pressures were 420 ± 54, 448 ± 84, and 500 ± 67 kPa in stages 0, 1, and 2, respectively. The increases in mean contact pressure in stage 2 versus 0 were significant (P = 0.039). The increases in peak contact pressure in stages 0 versus 2 were significant (P = 0.007). CONCLUSIONS: The elbow bears the load created by gravity and muscle contracture in the resting and swing motion. Moreover, extension limitation of stiff elbow increases the load bearing in the resting position and swing motion. Careful surgical management should be considered for meticulous clearance of bony spur around olecranon fossa to resolve the extension limitation of the elbow.
Assuntos
Contratura , Articulação do Cotovelo , Olécrano , Masculino , Feminino , Humanos , Cotovelo , Cadáver , Articulação do Cotovelo/cirurgia , Olécrano/cirurgia , Amplitude de Movimento Articular/fisiologia , Fenômenos BiomecânicosRESUMO
Fucoidan from brown seaweeds has several biological effects, including preserving intestinal integrity. To investigate the intestinal protective properties of high molecular weight fucoidan (HMWF) from Undaria pinnatifida on intestinal integrity dysfunction caused by methylglyoxal-derived hydroimidazolone-1 (MG-H1), one of the dietary advanced-glycation end products (dAGEs) in the human-colon carcinoma-cell line (Caco-2) cells and ICR mice. According to research, dAGEs may damage the intestinal barrier by increasing gut permeability. The findings of the study showed that HMWF + MG-H1 treatment reduced by 16.8% the amount of reactive oxygen species generated by MG-H1 treatment alone. Furthermore, HMWF + MGH-1 treatment reduced MG-H1-induced monolayer integrity disruption, as measured by alterations in transepithelial electrical resistance (135% vs. 75.5%) and fluorescein isothiocyanate incorporation (1.40 × 10-6 cm/s vs. 3.80 cm/s). HMWF treatment prevented the MG-H1-induced expression of tight junction markers, including zonula occludens-1, occludin, and claudin-1 in Caco-2 cells and mouse colon tissues at the mRNA and protein level. Also, in Caco-2 and MG-H1-treated mice, HMWF plays an important role in preventing receptor for AGEs (RAGE)-mediated intestinal damage. In addition, HMWF inhibited the nuclear factor kappa B activation and its target genes leading to intestinal inflammation. These findings suggest that HMWF with price competitiveness could play an important role in preventing AGEs-induced intestinal barrier dysfunction.
Assuntos
Aldeído Pirúvico , Junções Íntimas , Animais , Células CACO-2 , Claudina-1/genética , Claudina-1/metabolismo , Claudina-1/farmacologia , Fluoresceínas/metabolismo , Fluoresceínas/farmacologia , Humanos , Imidazóis , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mucosa Intestinal , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Peso Molecular , NF-kappa B/metabolismo , Ocludina/genética , Ocludina/metabolismo , Ocludina/farmacologia , Permeabilidade , Polissacarídeos , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Junções Íntimas/metabolismoRESUMO
ß-Lactoglobulin (ß-LG) is a major milk protein, making up more than 53% of the total whey proteins, and is seen as a valuable ingredient in food processing because of its high essential amino acid content and diverse functional applications. The Maillard reaction can occur during the storage and processing of food and generate various beneficial effects, including anti-allergenicity, antioxidant, and immunomodulatory effects. The addition of an ß-LG-lactose conjugate (LGL) produced by the Maillard reaction was shown to have a strong immune-enhancing effect, increasing both nitric oxide generation and cytokine expression through activation of RAW 264.7 cells, even after in vitro digestion. Furthermore, daily LGL administration resulted in the upregulation of several immune markers in a cyclophosphamide-induced immunosuppressive mouse model, indicating that this treatment stimulates multiple immune cells, including macrophages, natural killer cells, and lymphocytes, enhancing the proliferation and activation of both the innate and adaptive immune responses. Taken together, these findings indicate that consuming LGL on a regular basis can improve immunity by increasing the natural production of various immune cells.
Assuntos
Lactoglobulinas , Lactose , Animais , Ciclofosfamida , Digestão , Camundongos , Proteínas do Soro do LeiteRESUMO
Ochratoxin A (OTA) is a mycotoxin generated by Penicillium and Aspergillus species. It is often found in cereals. We hypothesized that OTA exposure induces epithelial-mesenchymal transition (EMT), leading to liver fibrosis. In this research, we explored whether the TGF-ß receptor I (TGF-ß RI)/Smad2/3 signaling pathway is related to EMT-induced hepatic fibrosis. In vitro and in vivo experiments, mRNA and protein expression of liver fibrosis-related markers such as fibronectin, α-smooth muscle actin (α-SMA) and E-cadherin were assessed. The levels of alkaline phosphatase, alanine transaminase, aspartate aminotransferase, and total bilirubin, which are used to assess damage, increased. We also confirmed the increase in mRNA and protein expression of TGF-ß RI, Smad2, and Smad3. The expression of liver fibrosis-related markers was decreased by siRNA-mediated silencing of Smad2/3, as well as TGF-RI suppression. Liver cells exposed to OTA showed enhanced TGF-ß RI expression on the cell membrane. These results demonstrated that OTA induces hepatic fibrosis through TGF-ß RI and Smad2/3 pathways in vitro and in vivo.
Assuntos
Cirrose Hepática , Fator de Crescimento Transformador beta , Transição Epitelial-Mesenquimal , Fibrose , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Ocratoxinas , RNA Mensageiro , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND: The incidence of inflammatory bowel disease (IBD) continues to increase worldwide. Multiple factors, including diet, loss of the intestinal barrier function, and imbalance of the immune system can cause IBD. A balanced diet is important for maintaining a healthy bowel and preventing IBD from occurring. The effects of probiotic Lactobacillus gasseri-fermented Maillard reaction products (MRPs) prepared by reacting whey protein with galactose on anti-inflammation and intestinal homeostasis were investigated in this study, which compared MPRs and probiotics separately. RESULTS: In an animal colitis model induced by 2% dextran sulfate sodium (DSS), FWG administration alleviated colon length loss and maintained intestinal immune system homeostasis as reflected by down-regulated interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α output, and metallopeptidase-9, and epithelial barrier balance as reflected by up-regulated occludin, E-cadherin, and zonula occludens-1 production in the colon. Furthermore, the expression of splenic cytokines such as IL-6, TNF-α, and IL-10 was up-regulated in the FWG-treated mice in a comparable amount to the control group to ensure the balance of immune responses. CONCLUSION: This study showed that the use of FWG protects the intestines from colitis caused by DSS and maintains immune balance. FWG increased antioxidant enzyme activity, increased intestinal permeability, and regulated the balance of pro- and anti-inflammatory cytokines in the intestines and spleen. Continued intake of FWG can alleviate IBD symptoms through the preservation of mucosal immune responses, epithelial junction and homeostasis through the regulated splenic cytokines. © 2021 Society of Chemical Industry.
Assuntos
Colite/tratamento farmacológico , Produtos Finais de Glicação Avançada/administração & dosagem , Lactobacillus gasseri/metabolismo , Probióticos/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Colite/induzido quimicamente , Colite/imunologia , Colite/fisiopatologia , Colo/efeitos dos fármacos , Colo/imunologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Galactose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/genética , Junções Íntimas/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteínas do Soro do Leite/metabolismoRESUMO
PURPOSE: We aimed to compare the outcomes and complications of anatomical shoulder arthroplasty (aTSA) and reverse total shoulder arthroplasty (rTSA) for primary glenohumeral osteoarthritis with intact cuff tissue. MATERIALS AND METHODS: The MEDLINE, Embase, and Cochrane Library databases were systematically searched for studies published before March 2, 2021 using the PRISMA guidelines. Studies were included if they directly compared aTSA and rTSA for treating primary glenohumeral arthritis. A meta-analysis was performed using six studies that compared radiologic outcomes, functional scores, and range of motion (ROM). All the data were pooled using a random-effects model. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated as dichotomous data, while continuous data were analyzed using mean differences with 95% CIs. RESULTS: Two independent researchers reviewed 1,061 studies. Six studies met the inclusion criteria. The range of motion, especially external rotation, was better for aTSA than for rTSA (MD = - 10.28, 95% CI: - 16.69 to - 3.88, P = 0.002). Functional scores showed no difference between aTSA and rTSA. Glenoid loosening (OR = 0.17, 95% CI: 0.06-0.50, P = 0.001) was more common with aTSA, and scapula notching (OR = 10.63, 95% CI: 1.73-65.27, P = 0.01) with rTSA. In the mid-term follow-up, the overall revision rate showed no difference between aTSA and rTSA, with a pooled OR of 0.33 (95% CI: 0.07-1.57, P = 0.16). CONCLUSION: A better ROM was achieved after aTSA than after rTSA. There was no difference in the revision rate at mid-term follow-up between aTSA and rTSA. Glenoid loosening was more common with aTSA, and scapula notching with rTSA. LEVEL OF EVIDENCE: Level IV, Meta-analysis.
Assuntos
Artroplastia do Ombro , Osteoartrite , Articulação do Ombro , Artroplastia do Ombro/métodos , Humanos , Osteoartrite/cirurgia , Amplitude de Movimento Articular , Estudos Retrospectivos , Articulação do Ombro/cirurgia , Tendões , Resultado do TratamentoRESUMO
Advanced glycation end products (AGEs) are the products formed through a non-enzymatic reaction of reducing sugars with proteins or lipids. There is a potential for toxicity in the case of AGEs produced through glycation with dicarbonyl compounds including methylglyoxal, glyoxal, and 3-deoxyglucosone. The AGEs bind the receptor for advanced glycation end products (RAGE) and stimulate the mitogen-activated protein (MAP) kinase signaling pathway that can increase the production of matrix metalloproteinases (MMPs). In addition, AGE-induced protein kinase B (Akt) signaling can promote cancer cell proliferation and contribute to many diseases such as kidney cancer. In light of the lack of extensive study of the relationship between methylglyoxal-induced AGEs (AGE4) and renal cancer, we studied the proliferous and anti-apoptotic effects of AGE4 on renal cell carcinoma (RCC) in this study. AGE4 treatment was involved in the proliferation and migration of RCC cells in vitro by upregulating proliferating cell nuclear antigen (PCNA) and MMPs while suppressing apoptotic markers such as Bax and caspase 3. Moreover, Akt and extracellular-signal-regulated kinase (ERK) were phosphorylated in RCC cells with AGE4 treatment. As a result, this study demonstrated that AGE4-RAGE axis can promote the growth ability of RCC by inducing PCNA, MMPs, and inhibiting apoptosis in RCC via the Akt and ERK signaling pathways.
Assuntos
Carcinoma de Células Renais/metabolismo , Proliferação de Células , Sobrevivência Celular , Produtos Finais de Glicação Avançada/farmacologia , Neoplasias Renais/metabolismo , Sistema de Sinalização das MAP Quinases , Western Blotting , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Citometria de Fluxo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Aldeído Pirúvico/farmacologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Advanced glycation end products (AGEs) are formed via nonenzymatic reactions between reducing sugars and proteins. Recent studies have shown that methylglyoxal, a potent precursor for AGEs, causes a variety of biological dysfunctions, including diabetes, inflammation, renal failure, and cancer. However, little is known about the function of methylglyoxal-derived AGEs (AGE4) in kidney cells. Therefore, we verified the expression of endoplasmic reticulum (ER) stress-related genes and apoptosis markers to determine the effects of AGE4 on human proximal epithelial cells (HK-2). Moreover, our results showed that AGE4 induced the expression of apoptosis markers, such as Bax, p53, and kidney injury molecule-1, but downregulated Bcl-2 and cyclin D1 levels. AGE4 also promoted the expression of NF-κB, serving as a transcription factor, and the phosphorylation of c-Jun NH2-terminal kinase (JNK), which induced cell apoptosis and ER stress mediated by the JNK inhibitor. Furthermore, AGE4 induced mitochondrial dysfunction by inducing the permeabilization of the mitochondrial membrane and ATP synthesis. Through in vitro and in vivo experiments, this study provides a new perspective on renal dysfunction with regard to the AGE4-induced RAGE /JNK signaling pathway, which leads to renal cell apoptosis via the imbalance of mitochondrial function and ER stress in kidney damage.
Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Produtos Finais de Glicação Avançada/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , Aldeído Pirúvico/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Humanos , Rim/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismoRESUMO
Thallium (Tl) is a rare element and one of the most harmful metals. This study validated an analytical method for determining Tl in foods by inductively coupled plasma mass spectrometry (ICP-MS) based on food matrices and calories. For six representative foods, the method's correlation coefficient (R2) was above 0.999, and the method limit of detection (MLOD) was 0.0070-0.0498 µg kg-1, with accuracy ranging from 82.06% to 119.81% and precision within 10%. We investigated 304 various foods in the South Korean market, including agricultural, fishery, livestock, and processed foods. Tl above the MLOD level was detected in 148 samples and was less than 10 µg kg-1 in 98% of the samples. Comparing the Tl concentrations among food groups revealed that fisheries and animal products had higher Tl contents than cereals and vegetables. Tl exposure via food intake did not exceed the health guidance level.
Assuntos
Grão Comestível/química , Monitoramento Ambiental , Análise de Alimentos , Contaminação de Alimentos/análise , Tálio/análise , Verduras/química , Espectrometria de Massas , República da CoreiaRESUMO
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium, and it is found in many foods. Acrylamide (AA) can be produced in foods treated at high temperatures. In this study, we investigated the combined toxicity of OTA and AA against human renal and hepatic cells in vitro. The concentration at which the synergistic effect of OTA and AA occurs was determined using the combination index obtained from the cell viability results for OTA and AA individually or in combination. The synergistic toxicity of both substances was evaluated by cell viability and the production of reactive oxygen species. In addition, apoptosis-related markers were significantly upregulated by OTA and AA individually or in combination. To determine the combined toxic effects of OTA and AA on the cells, the levels of enzymes involved in the phase I reaction and apoptosis-related markers were determined using quantitative (q)PCR and Western blot. The expression levels of CYP enzymes CYP1A1 and CYP1A2 involved in the phase I reaction significantly increased when the cells were treated with OTA and AA in combination. The expression of apoptosis-related markers, Bcl2-associated X protein (Bax) and caspase 3, also increased when the cells were treated with OTA and AA in combination. Therefore, the synergistic toxicity of OTA and AA suggests that such effects may contribute to nephrotoxicity and hepatotoxicity.
Assuntos
Acrilamida/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ocratoxinas/toxicidade , Acrilamida/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Culinária/métodos , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Microbiologia de Alimentos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Temperatura Alta/efeitos adversos , Humanos , Rim/citologia , Fígado/citologia , Ocratoxinas/farmacocinética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade AgudaRESUMO
Ochratoxin A (OTA) is a toxin produced by fungi such as Aspergillus spp. and Penicillium spp. The key target organ of OTA toxicity is the kidney, and it is known that epithelial-to-mesenchymal transition (EMT) leading to fibrosis is enhanced after long-term exposure of the kidney to OTA. However, the mechanisms responsible for this onset are not precisely known. Therefore, the purpose of this study was to investigate the mechanism of OTA-induced EMT and fibrosis in human proximal tubule HK-2 cells and mouse kidneys. Cells were treated for 48 h with various concentrations of OTA (50, 100, and 200 nM) and mice underwent oral administration of various doses of OTA (200 and 1000 µg/kg body weight) for 12 weeks. Blood urea nitrogen and creatinine levels were increased in the serum of OTA-treated mice, and fibrosis was observed in kidney tissues. Furthermore, alpha-smooth muscle actin (α-SMA) and fibronectin levels were increased, and E-cadherin level was decreased by OTA in both HK-2 cells and kidney tissues. In addition, the expression levels of TGF-ß, smad2/3, and ß-catenin were increased after OTA treatment. α-SMA, E-cadherin, and fibronectin were shown to be regulated by the activation of transcription factors, smad2/3 and ß-catenin. These results demonstrated that OTA induces EMT and renal fibrosis through Smad2/3 and ß-catenin signaling pathways in vitro and in vivo.
Assuntos
Rim/efeitos dos fármacos , Ocratoxinas/toxicidade , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose , Humanos , Túbulos Renais Proximais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismoRESUMO
Codonopsis lanceolata has been widely used as an anti-inflammatory and anti-lipogenic agent in traditional medicine. Recently, C. lanceolata was reported to prevent hypertension by improving vascular function. This study evaluated the effects of C. lanceolata and its major component lancemaside A on cytosolic calcium concentration in vascular endothelial cells and vascular smooth muscle cells. Cytosolic calcium concentration was measured using fura-2 AM fluorescence. C. lanceolata or lancemaside A increased the cytosolic calcium concentration by releasing Ca2+ from the endoplasmic reticulum and sarcoplasmic reticulum and by Ca2+ entry into endothelial cells and vascular smooth muscle cells from extracellular sources. The C. lanceolata- and lancemaside A-induced cytosolic calcium concentration increases were significantly inhibited by lanthanum, an inhibitor of non-selective cation channels, in both endothelial cells and vascular smooth muscle cells. Moreover, C. lanceolata and lancemaside A significantly inhibited store-operated Ca2+ entry under pathological extracellular Ca2+ levels. In Ca2+-free extracellular fluid, increases in the cytosolic calcium concentration induced by C. lanceolata or lancemaside A were significantly inhibited by U73122, an inhibitor of phospholipase C, and 2-APB, an inositol 1,4,5-trisphosphate receptor antagonist. In addition, dantrolene treatment, which inhibits Ca2+ release through ryanodine receptor channels, also inhibited C. lanceolata- or lancemaside A-induced increases in the cytosolic calcium concentration through the phospholipase C/inositol 1,4,5-trisphosphate pathway. These results suggest that C. lanceolata and lancemaside A increase the cytosolic calcium concentration through the non-selective cation channels and phospholipase C/inositol 1,4,5-trisphosphate pathways under physiological conditions and inhibit store-operated Ca2+ entry under pathological conditions in endothelial cells and vascular smooth muscle cells. C. lanceolata or lancemaside A can protect endothelial cells and vascular smooth muscle cells by maintaining cytosolic calcium concentration homeostasis, suggesting possible applications for these materials in diets for preventing vascular damage.
Assuntos
Cálcio , Codonopsis , Células Endoteliais , Homeostase , Miócitos de Músculo LisoRESUMO
Codonopsis lanceolata (CL) extract was shown to have antihypertensive effects in hypertensive rats. This randomized controlled trial was designed to investigate the ability of CL extract to prevent hypertension (HTN) in prehypertensive subjects. Eighty subjects aged 19-60 years with a systolic blood pressure (BP) of 120-139 mmHg and a diastolic BP of 80-89 mmHg were recruited over 3 months. Subjects were randomized 1:1 to a CL group and a placebo (PL) group and administered CL extract and starch, respectively, for 6 weeks. (BP) was measured and blood sampled at baseline and at the end of the trial. Relative to baseline, systolic BP was significantly decreased, and catalase activity was significantly increased following CL treatment in both the elevated systolic BP and stage 1 HTN subgroups. In the elevated systolic BP subgroup, serum nitrite concentration relative to baseline was significantly increased in CL compared to PL treated subjects (p = .038). In subjects with stage 1 HTN, high sensitivity C-reactive protein (p = .020) and malondialdehyde (p = .039) showed significantly greater reductions from baseline in the CL than in the PL group. In summary, CL was effective in preventing endothelial dysfunction, inflammation, and lipid peroxidation in prehypertensive subjects, with these effects differing according to baseline systolic BP levels.
Assuntos
Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Codonopsis/química , Extratos Vegetais/uso terapêutico , Pré-Hipertensão/tratamento farmacológico , Adulto , Proteína C-Reativa/metabolismo , Método Duplo-Cego , Feminino , Humanos , Peroxidação de Lipídeos , Masculino , Malondialdeído/metabolismo , Pessoa de Meia-Idade , Nitritos/sangue , Adulto JovemRESUMO
Background and objectives: This study aimed to investigate the change in bond strength between resin cement and tetragonal zirconia polycrystalline stabilized with 3 to 8 mol% yttrium oxide (Y-TZP) and observe the topographical change of the Y-TZP surface when etched with hydrofluoric acid (HF) solution under different concentration and temperature conditions. Materials and Methods: Non-etched sintered Y-TZP specimens under two different temperature conditions (room temperature and 70-80 °C, respectively), were used as a control, while experimental groups were etched with 5%, 10%, 20%, and 40% HF solutions for 10 min. After zirconia primer and MDP-containing resin cement were applied to the Y-TZP surface, the shear bond strength (SBS) of each experimental group was measured. Results: Under room temperature conditions, the highest SBS value was measured in the 40% HF etching group, representing a significant deviation from the other groups (p < 0.05). In the 70-80 °C tests, the 40% HF etching group also had the highest SBS value, but there was no significant difference when compared to the 20% HF etching group (p > 0.05). From SEM and AFM observations, the HF solution increasingly dissolved the Y-TZP surface grain structure as the concentration and application temperature rose, resulting in high surface roughness and irregularities. Conclusions: Pretreating with either 20% HF solution at 70-80 °C or 40% HF solution at room temperature and 70-80 °C effectively acid etched the Y-TZP surface, resulting in more surface roughness and irregularities. Accounting for the concentration and temperature conditions of the HF solution, using 40% HF solution at room temperature will result in improvements in adhesion between resin cement and Y-TZP.
Assuntos
Ácido Fluorídrico , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , TemperaturaRESUMO
Urban particulate matter (UPM) is atmospheric particulate samples obtained from industrialized urban areas. It is known that pulmonary fibrosis can result directly or indirectly from particulate matter. In this study, the protective effect of chebulic acid (CA) against UPM-induced epithelial-mesenchymal transition (EMT) in the pulmonary alveolar epithelial (PAE) cells were investigated. Our findings revealed that PAE cells were changed from the epithelial phenotype to mesenchymal one after exposure to UPM. Furthermore, co-treatment and post-treatment of CA inhibited EMT progression. Especially the key epithelial marker, E-cadherin, was down-regulated by UPM and recovered by CA. Also, gelatin zymogram showed that the activity of matrix metalloproteinase (MMP)-2 and MMP-9 was decreased by co-treatment and post-treatment of CA. Further investigation revealed that CA attenuated UPM-stimulated PAE cells invasion ability. These data showed that UPM promoted PAE cells invasion, reactive oxygen species-mediated extracellular matrix degradation and CA reduced the potential health risks associated with UPM.
Assuntos
Poluentes Atmosféricos/toxicidade , Benzopiranos/farmacologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Material Particulado/toxicidade , Substâncias Protetoras/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Epiteliais/fisiologia , Humanos , Alvéolos Pulmonares , Espécies Reativas de Oxigênio/metabolismoRESUMO
Immunomodulation involves two mechanisms, immunostimulation and immunosuppression. It is a complex mechanism that regulates the pathophysiology and pathogenesis of various diseases affecting the immune system. Immunomodulators can be used as immunostimulators to reduce the side effects of drugs that induce immunosuppression. In this study, we characterized the chemical composition of high molecular weight fucoidan (HMWF) and low molecular weight fucoidan and compared their functions as natural killer (NK) cell-derived immunostimulators in vitro. We also tested the effectiveness of HMWF, which has a relatively high function in vitro, as an immunostimulator in immunosuppressed animal models. In these models, HWMF significantly restored NK cell cytotoxicity and granzyme B release to the control group level. In addition, the expression of interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-12, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α also increased in the spleen. This study suggests that HMWF acts as an effective immunostimulant under immunosuppressive conditions.
Assuntos
Ciclofosfamida/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Polissacarídeos/farmacologia , Undaria/química , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Baço/efeitos dos fármacos , Baço/metabolismoRESUMO
Maillard reaction products formed from whey protein isolate (WPI) and sugar have been shown to have an anti-inflammatory effect in vitro. Here, we incubated WPI and galactose (GWA) in an aqueous solution at 65°C for 24 h to produce a glycated conjugate, which was then fermented using Lactobacillus gasseri 4M13 to obtain the fermented product (F-GWA). We demonstrated that F-GWA had an anti-inflammatory effect on lipopolysaccharide (LPS)-stimulated RAW264.7 cells. It reduced both LPS-stimulated nitric oxide production and LPS-stimulated increases in the gene expression levels of tumor necrosis factor-α and cyclooxygenase-2 in a dose-dependent manner. Furthermore, F-GWA inhibited the LPS-induced phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase, members of the mitogen-activated protein kinase family. The glycation process was evaluated by measuring fluorescence intensity and the furosine concentration during the Maillard reaction to form GWA. The protein modifications of WPI were analyzed using MALDI-TOF tandem mass spectrometry. We found that the combination of the Maillard reaction and L. gasseri 4M13 fermentation increased the prebiotic properties of GWA as well as organic acid production, compared with the nonreacted WPI and galactose.