RESUMO
S-adenosylmethionine (SAM), generated from methionine and ATP by S-adenosyl methionine synthetase (SAMS), is the universal methyl group donor required for numerous cellular methylation reactions. In Caenorhabditis elegans, silencing sams-1, the major isoform of SAMS, genetically or via dietary restriction induces a robust mitochondrial unfolded protein response (UPRmt) and lifespan extension. In this study, we found that depleting SAMS-1 markedly decreases mitochondrial SAM levels. Moreover, RNAi knockdown of SLC-25A26, a carrier protein responsible for transporting SAM from the cytoplasm into the mitochondria, significantly lowers the mitochondrial SAM levels and activates UPRmt, suggesting that the UPRmt induced by sams-1 mutations might result from disrupted mitochondrial SAM homeostasis. Through a genetic screen, we then identified a putative mitochondrial tRNA methyltransferase TRMT-10C.2 as a major downstream effector of SAMS-1 to regulate UPRmt and longevity. As disruption of mitochondrial tRNA methylation likely leads to impaired mitochondrial tRNA maturation and consequently reduced mitochondrial translation, our findings suggest that depleting mitochondrial SAM level might trigger UPRmt via attenuating protein translation in the mitochondria. Together, this study has revealed a potential mechanism by which SAMS-1 regulates UPRmt and longevity.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Longevidade/genética , S-Adenosilmetionina/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , RNA de Transferência/metabolismoRESUMO
S-adenosyl methionine synthetase (SAMS) catalyzes the biosynthesis of S-adenosyl methionine (SAM), which serves as a universal methyl group donor for numerous biochemical reactions. Previous studies have clearly demonstrated that SAMS-1, a C. elegans homolog of mammalian SAMS, is critical for dietary restriction (DR)-induced longevity in Caenorhabditis elegans. In addition to SAMS-1, three other SAMS paralogs have been identified in C. elegans. However, their roles in longevity regulation have never been explored. Here, we show that depletion of sams-5, but not sams-3 or sams-4, can extend lifespan in worms. However, the phenotypes and expression pattern of sams-5 are distinct from sams-1, suggesting that these two SAMSs might regulate DR-induced longevity via different mechanisms. Through the genetic epistasis analysis, we have identified that sams-5 is required for DR-induced longevity in a pha-4/FOXA dependent manner.