Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
FASEB J ; 38(2): e23407, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197598

RESUMO

This study investigated the role of the axis involving chemokine receptor 6 (CCR6) and its ligand chemokine (C-C motif) ligand 20 (CCL20) in acute kidney disease (AKD) using an ischemia-reperfusion injury (IRI) model. The model was established by clamping the unilateral renal artery pedicle of C57BL/6 mice for 30 min, followed by evaluation of CCL20/CCR6 expression at 4 weeks post-IRI. In vitro studies were conducted to examine the effects of hypoxia and H2 O2 -induced oxidative stress on CCL20/CCR6 expression in kidney tissues of patients with AKD and chronic kidney disease (CKD). Tubular epithelial cell apoptosis was more severe in C57BL/6 mice than in CCL20 antibody-treated mice, and CCR6, NGAL mRNA, and IL-8 levels were higher under hypoxic conditions. CCL20 blockade ameliorated apoptotic damage in a dose-dependent manner under hypoxia and reactive oxygen species injury. CCR6 expression in IRI mice indicated that the disease severity was similar to that in patients with the AKD phenotype. Morphometry of CCL20/CCR6 expression revealed a higher likelihood of CCR6+ cell presence in CKD stage 3 patients than in stage 1-2 patients. Kidney tissues of patients with CKD frequently contained CCL20+ cells, which were positively correlated with interstitial inflammation. CCL20/CCR6 levels were increased in fibrotic kidneys at 4 and 8 weeks after 5/6 nephrectomy. These findings suggest that modulating the CCL20/CCR6 pathway is a potential therapeutic strategy for managing the progression of AKD to CKD.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ligantes , Rim , Células Epiteliais , Artéria Renal , Hipóxia , Receptores CCR6/genética , Quimiocina CCL20/genética
2.
Biochem J ; 480(9): 573-585, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078496

RESUMO

Various alkylating agents are known to preferentially modify guanine in DNA, resulting in the formation of N7-alkylguanine (N7-alkylG) and the imidazole ring opened alkyl-formamidopyrimidine (alkyl-FapyG) lesions. Evaluating the mutagenic effects of N7-alkylG has been challenging due to the instability of the positively charged N7-alkylG. To address this issue, we developed a 2'-fluorine-mediated transition-state destabilization approach, which stabilizes N7-alkylG and prevents spontaneous depurination. We also developed a postsynthetic conversion of 2'-F-N7-alkylG DNA into 2'-F-alkyl-FapyG DNA. Using these methods, we incorporated site-specific N7-methylG and methyl-FapyG into pSP189 plasmid and determined their mutagenic properties in bacterial cells using the supF-based colony screening assay. The mutation frequency of N7-methylG was found to be less than 0.5%. Our crystal structure analysis revealed that N7-methylation did not significantly alter base pairing properties, as evidenced by a correct base pairing between 2'-F-N7-methylG and dCTP in Dpo4 polymerase catalytic site. In contrast, the mutation frequency of methyl-FapyG was 6.3%, highlighting the mutagenic nature of this secondary lesion. Interestingly, all mutations arising from methyl-FapyG in the 5'-GGT(methyl-FapyG)G-3' context were single nucleotide deletions at the 5'-G of the lesion. Overall, our results demonstrate that 2'-fluorination technology is a useful tool for studying the chemically labile N7-alkylG and alkyl-FapyG lesions.


Assuntos
Dano ao DNA , DNA , Alquilação , DNA/química , Guanina/química
3.
Biochem J ; 479(21): 2297-2309, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36268656

RESUMO

If left unrepaired, the major oxidative DNA lesion 7,8-dihydro-8-oxoguanine (oxoG) promotes G-to-T transversions by favorably adopting a syn conformation and base pairing with dATP during replication. The human oxoG DNA glycosylase hOGG1 senses and removes oxoG amid millions-fold excess of guanine, thereby counteracting the genotoxic effects of the major oxidative damage. Crystal structures of hOGG1 in complex with oxoG-containing DNA have provided key insights into the lesion recognition and catalysis mechanisms of the enzyme. These lesion-recognition complex (LRC) structures typically involve a catalytically inactive hOGG1 mutant, where one of the catalytic-site amino acid residues is mutated to prevent the cleavage of oxoG. The use of a catalytically incompetent hOGG1 mutant has thus precluded understanding of unscathed interactions between oxoG and hOGG1 catalytic site as well as interactions among catalytic-site amino acid residues. As an orthogonal approach to visualize such interactions, we have co-crystallized a catalytically competent hOGG1 bound to 2'-fluoro-oxodG-containing DNA, a transition state destabilizing inhibitor that binds hOGG1 but is not processed by the enzyme. In this fluorinated lesion-recognition complex (FLRC), the 8-oxo moiety of oxoG is recognized by Gly42 and the Watson-Crick edge of oxoG is contacted by Gln315 and Pro266. The previously observed salt bridge between Lys249 and Cys253 is lacking in the FLRC, suggesting Lys249 is primed by Cys253 and poised for nucleophilic attack on C1' of oxodG. Overall, hOGG1 FLRC marks the first structure of oxoG presented into an intact catalytic site of hOGG1 and provides complementary insights into the glycosylase mechanisms of the enzyme.


Assuntos
DNA Glicosilases , Humanos , Aminoácidos/metabolismo , Domínio Catalítico , DNA/química , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/genética , DNA-Formamidopirimidina Glicosilase/metabolismo , Guanina/metabolismo , Estresse Oxidativo
4.
Chem Res Toxicol ; 35(3): 512-521, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35239327

RESUMO

Non-enzymatic alkylation on DNA often generates N7-alkyl-2'-deoxyguanosine (N7alkylG) adducts as major lesions. N7alkylG adducts significantly block replicative DNA polymerases and can be bypassed by translesion synthesis (TLS) polymerases such as polymerase η (polη). To gain insights into the bypass of N7alkylG by TLS polymerases, we conducted kinetic and structural studies of polη catalyzing across N7BnG, a genotoxic lesion generated by the carcinogenic N-nitrosobenzylmethylamine. The presence of templating N7BnG in the polη catalytic site decreased the replication fidelity by ∼9-fold, highlighting the promutagenicity of N7BnG. The catalytic efficiency for dCTP incorporation opposite N7BnG decreased ∼22-fold and ∼7-fold compared to the incorporation opposite undamaged guanine in the presence of Mg2+ and Mn2+, respectively. A crystal structure of the complexes grown with polη, templating N7BnG, incoming dCTP, and Mg2+ ions showed the lack of the incoming nucleotide and metal cofactors in the polη catalytic site. Interestingly, the templating N7BnG adopted a syn conformation, which has not been observed in the published N7alkylG structures. The preferential formation of syn-N7BnG conformation at the templating site may deter the binding of an incoming dCTP, causing the inefficient bypass by polη. In contrast, the use of Mn2+ in place of Mg2+ in co-crystallization yielded a ternary complex displaying an anti-N7BnG:dCTP base pair and catalytic metal ions, which would be a close mimic of a catalytically competent state. We conclude that certain bulky N7-alkylG lesions can slow TLS polymerase-mediated bypass by adopting a catalytically unfavorable syn conformation in the replicating base pair site.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Domínio Catalítico , Adutos de DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Metais/química
5.
Biochem J ; 478(9): 1769-1781, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33881499

RESUMO

Nucleobases within DNA are attacked by reactive oxygen species to produce 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major oxidative lesions. The high mutagenicity of oxoG is attributed to the lesion's ability to adopt syn-oxoG:anti-dA with Watson-Crick-like geometry. Recent studies have revealed that Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) inserts nucleotide opposite oxoA in an error-prone manner and accommodates syn-oxoA:anti-dGTP with Watson-Crick-like geometry, highlighting a promutagenic nature of oxoA. To gain further insights into the bypass of oxoA by Dpo4, we have conducted kinetic and structural studies of Dpo4 extending oxoA:dT and oxoA:dG by incorporating dATP opposite templating dT. The extension past oxoA:dG was ∼5-fold less efficient than that past oxoA:dT. Structural studies revealed that Dpo4 accommodated dT:dATP base pair past anti-oxoA:dT with little structural distortion. In the Dpo4-oxoA:dG extension structure, oxoA was in an anti conformation and did not form hydrogen bonds with the primer terminus base. Unexpectedely, the dG opposite oxoA exited the primer terminus site and resided in an extrahelical site, where it engaged in minor groove contacts to the two immediate upstream bases. The extrahelical dG conformation appears to be induced by the stabilization of anti-oxoA conformation via bifurcated hydrogen bonds with Arg332. This unprecedented structure suggests that Dpo4 may use Arg332 to sense 8-oxopurines at the primer terminus site and slow the extension from the mismatch by promoting anti conformation of 8-oxopurines.


Assuntos
Adenina/análogos & derivados , Proteínas Arqueais/química , DNA Polimerase beta/química , Guanina/análogos & derivados , Sulfolobus solfataricus/enzimologia , Adenina/química , Adenina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanina/química , Guanina/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética , Termodinâmica
6.
Biochem J ; 478(10): 1985-1997, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33960375

RESUMO

G:T mismatches, the major mispairs generated during DNA metabolism, are repaired in part by mismatch-specific DNA glycosylases such as methyl-CpG-binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). Mismatch-specific DNA glycosylases must discriminate the mismatches against million-fold excess correct base pairs. MBD4 efficiently removes thymine opposite guanine but not opposite adenine. Previous studies have revealed that the substrate thymine is flipped out and enters the catalytic site of the enzyme, while the estranged guanine is stabilized by Arg468 of MBD4. To gain further insights into the mismatch discrimination mechanism of MBD4, we assessed the glycosylase activity of MBD4 toward various base pairs. In addition, we determined a crystal structure of MBD4 bound to T:O6-methylguanine-containing DNA, which suggests the O6 and N2 of purine and the O4 of pyrimidine are required to be a substrate for MBD4. To understand the role of the Arg468 finger in catalysis, we evaluated the glycosylase activity of MBD4 mutants, which revealed the guanidinium moiety of Arg468 may play an important role in catalysis. D560N/R468K MBD4 bound to T:G mismatched DNA shows that the side chain amine moiety of the Lys stabilizes the flipped-out thymine by a water-mediated phosphate pinching, while the backbone carbonyl oxygen of the Lys engages in hydrogen bonds with N2 of the estranged guanine. Comparison of various DNA glycosylase structures implies the guanidinium and amine moieties of Arg and Lys, respectively, may involve in discriminating between substrate mismatches and nonsubstrate base pairs.


Assuntos
Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Guanina/metabolismo , Timina/metabolismo , Catálise , Domínio Catalítico , Guanina/química , Humanos , Conformação Proteica , Especificidade por Substrato , Timina/química
7.
Nucleic Acids Res ; 48(9): 5119-5134, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32282906

RESUMO

Reactive oxygen species generate the genotoxic 8-oxoguanine (oxoG) and 8-oxoadenine (oxoA) as major oxidative lesions. The mutagenicity of oxoG is attributed to the lesion's ability to evade the geometric discrimination of DNA polymerases by adopting Hoogsteen base pairing with adenine in a Watson-Crick-like geometry. Compared with oxoG, the mutagenesis mechanism of oxoA, which preferentially induces A-to-C mutations, is poorly understood. In the absence of protein contacts, oxoA:G forms a wobble conformation, the formation of which is suppressed in the catalytic site of most DNA polymerases. Interestingly, human DNA polymerase η (polη) proficiently incorporates dGTP opposite oxoA, suggesting the nascent oxoA:dGTP overcomes the geometric discrimination of polη. To gain insights into oxoA-mediated mutagenesis, we determined crystal structures of polη bypassing oxoA. When paired with dGTP, oxoA adopted a syn-conformation and formed Hoogsteen pairing while in a wobble geometry, which was stabilized by Gln38-mediated minor groove contacts to oxoA:dGTP. Gln38Ala mutation reduced misinsertion efficiency ∼55-fold, indicating oxoA:dGTP misincorporation was promoted by minor groove interactions. Also, the efficiency of oxoA:dGTP insertion by the X-family polß decreased ∼380-fold when Asn279-mediated minor groove contact to dGTP was abolished. Overall, these results suggest that, unlike oxoG, oxoA-mediated mutagenesis is greatly induced by minor groove interactions.


Assuntos
Adenina/análogos & derivados , DNA Polimerase Dirigida por DNA/química , Mutagênese , Adenina/química , Pareamento de Bases , DNA Polimerase beta/química , DNA Polimerase beta/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxiguanina/química , Nucleotídeos de Desoxiguanina/metabolismo , Humanos , Cinética , Mutação , Nucleotídeos de Timina/metabolismo
8.
Sensors (Basel) ; 22(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684765

RESUMO

It is possible to construct cost-efficient three-dimensional (3D) or four-dimensional (4D) scanning systems using multiple affordable off-the-shelf RGB-D sensors to produce high-quality reconstructions of 3D objects. However, the quality of these systems' reconstructions is sensitive to a number of factors in reconstruction pipelines, such as multi-view calibration, depth estimation, 3D reconstruction, and color mapping accuracy, because the successive pipelines to reconstruct 3D meshes from multiple active stereo sensors are strongly correlated with each other. This paper categorizes the pipelines into sub-procedures and analyze various factors that can significantly affect reconstruction quality. Thus, this paper provides analytical and practical guidelines for high-quality 3D reconstructions with off-the-shelf sensors. For each sub-procedure, this paper shows comparisons and evaluations of several methods using data captured by 18 RGB-D sensors and provide analyses and discussions towards robust 3D reconstruction. Through various experiments, it has been demonstrated that significantly more accurate 3D scans can be obtained with the considerations along the pipelines. We believe our analyses, benchmarks, and guidelines will help anyone build their own studio and their further research for 3D reconstruction.


Assuntos
Algoritmos , Imageamento Tridimensional , Calibragem , Imageamento Tridimensional/métodos
9.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591022

RESUMO

The relationship between the disparity and depth information of corresponding pixels is inversely proportional. Thus, in order to accurately estimate depth from stereo vision, it is important to obtain accurate disparity maps, which encode the difference between horizontal coordinates of corresponding image points. Stereo vision can be classified as either passive or active. Active stereo vision generates pattern texture, which passive stereo vision does not have, on the image to fill the textureless regions. In passive stereo vision, many surveys have discovered that disparity accuracy is heavily reliant on attributes, such as radiometric variation and color variation, and have found the best-performing conditions. However, in active stereo matching, the accuracy of the disparity map is influenced not only by those affecting the passive stereo technique, but also by the attributes of the generated pattern textures. Therefore, in this paper, we analyze and evaluate the relationship between the performance of the active stereo technique and the attributes of pattern texture. When evaluating, experiments are conducted under various settings, such as changing the pattern intensity, pattern contrast, number of pattern dots, and global gain, that may affect the overall performance of the active stereo matching technique. Through this evaluation, our discovery can act as a noteworthy reference for constructing an active stereo system.


Assuntos
Algoritmos , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Visão Ocular
10.
J Am Chem Soc ; 143(45): 18960-18976, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34726902

RESUMO

DNA interstrand cross-links (ICLs) are extremely deleterious and structurally diverse, driving the evolution of ICL repair pathways. Discovering ICL-inducing agents is, thus, crucial for the characterization of ICL repair pathways and Fanconi anemia, a genetic disease caused by mutations in ICL repair genes. Although several studies point to oxidative stress as a cause of ICLs, oxidative stress-induced cross-linking events remain poorly characterized. Also, polycyclic aromatic amines, potent environmental carcinogens, have been implicated in producing ICLs, but their identities and sequences are unknown. To close this knowledge gap, we tested whether ICLs arise by the oxidation of 8-arylamino-2'-deoxyadenosine (ArNHdA) lesions, adducts produced by arylamino carcinogens. Herein, we report that ArNHdA acts as a latent cross-linking agent to generate ICLs under oxidative conditions. The formation of an ICL from 8-aminoadenine, but not from 8-aminoguanine, highlights the specificity of 8-aminopurine-mediated ICL production. Under the influence of the reactive oxygen species (ROS) nitrosoperoxycarbonate, ArNHdA (Ar = biphenyl, fluorenyl) lesions were selectively oxidized to generate ICLs. The cross-linking reaction may occur between the C2-ArNHdA and N2-dG, presumably via oxidation of ArNHdA into a reactive diiminoadenine intermediate followed by the nucleophilic attack of the N2-dG on the diiminoadenine. Overall, ArNHdA-mediated ICLs represent rare examples of ROS-induced ICLs and polycyclic aromatic amine-mediated ICLs. These results reveal novel cross-linking chemistry and the genotoxic effects of arylamino carcinogens and support the hypothesis that C8-modified adenines with low redox potential can cause ICLs in oxidative stress.


Assuntos
Alquilantes/química , Compostos de Anilina/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA/efeitos dos fármacos , DNA/química , Desoxiadenosinas/química , Carbonatos/química , Adutos de DNA/síntese química , Nitratos/química , Oxirredução
11.
Biochem J ; 477(15): 2859-2871, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32686822

RESUMO

Reactive oxygen species induced by ionizing radiation and metabolic pathways generate 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as two major forms of oxidative damage. The mutagenicity of oxoG, which promotes G to T transversions, is attributed to the lesion's conformational flexibility that enables Hoogsteen base pairing with dATP in the confines of DNA polymerases. The mutagenesis mechanism of oxoA, which preferentially causes A to C transversions, remains poorly characterized. While structures for oxoA bypass by human DNA polymerases are available, that of prokaryotic DNA polymerases have not been reported. Herein, we report kinetic and structural characterizations of Sulfolobus solfataricus Dpo4 incorporating a nucleotide opposite oxoA. Our kinetic studies show oxoA at the templating position reduces the replication fidelity by ∼560-fold. The catalytic efficiency of the oxoA:dGTP insertion is ∼300-fold greater than that of the dA:dGTP insertion, highlighting the promutagenic nature of oxoA. The relative efficiency of the oxoA:dGTP misincorporation is ∼5-fold greater than that of the oxoG:dATP misincorporation, suggesting the mutagenicity of oxoA is comparable to that of oxoG. In the Dpo4 replicating base pair site, oxoA in the anti-conformation forms a Watson-Crick base pair with an incoming dTTP, while oxoA in the syn-conformation assumes Hoogsteen base pairing with an incoming dGTP, displaying the dual coding potential of the lesion. Within the Dpo4 active site, the oxoA:dGTP base pair adopts a Watson-Crick-like geometry, indicating Dpo4 influences the oxoA:dGTP base pair conformation. Overall, the results reported here provide insights into the miscoding properties of the major oxidative adenine lesion during translesion synthesis.


Assuntos
Adenina/análogos & derivados , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Sulfolobus solfataricus/genética , Adenina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Pareamento de Bases , Domínio Catalítico , DNA Polimerase beta/genética , Reparo do DNA , DNA Bacteriano/biossíntese , Guanosina Trifosfato/metabolismo , Mutagênicos/metabolismo , Conformação Proteica , Sulfolobus solfataricus/metabolismo , Tiamina/metabolismo
12.
Biochem J ; 477(5): 937-951, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32039434

RESUMO

The cisplatin-1,2-d(GpG) (Pt-GG) intrastrand cross-link is the predominant DNA lesion generated by cisplatin. Cisplatin has been shown to predominantly induce G to T mutations and Pt-GG permits significant misincorporation of dATP by human DNA polymerase ß (polß). In agreement, polß overexpression, which is frequently observed in cancer cells, is linked to cisplatin resistance and a mutator phenotype. However, the structural basis for the misincorporation of dATP opposite Pt-GG is unknown. Here, we report the first structures of a DNA polymerase inaccurately bypassing Pt-GG. We solved two structures of polß misincorporating dATP opposite the 5'-dG of Pt-GG in the presence of Mg2+ or Mn2+. The Mg2+-bound structure exhibits a sub-optimal conformation for catalysis, while the Mn2+-bound structure is in a catalytically more favorable semi-closed conformation. In both structures, dATP does not form a coplanar base pairing with Pt-GG. In the polß active site, the syn-dATP opposite Pt-GG appears to be stabilized by protein templating and pi stacking interactions, which resembles the polß-mediated dATP incorporation opposite an abasic site. Overall, our results suggest that the templating Pt-GG in the polß active site behaves like an abasic site, promoting the insertion of dATP in a non-instructional manner.


Assuntos
Antineoplásicos/química , Cisplatino/química , Dano ao DNA/fisiologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Mutagênese/fisiologia , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Cristalografia por Raios X/métodos , Dano ao DNA/efeitos dos fármacos , Humanos , Mutagênese/efeitos dos fármacos , Estrutura Secundária de Proteína
13.
Biochem J ; 477(23): 4543-4558, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175093

RESUMO

Nitrogen mustards are among the first modern anticancer chemotherapeutics that are still widely used as non-specific anticancer alkylating agents. While the mechanism of action of mustard drugs involves the generation of DNA interstrand cross-links, the predominant lesions produced by these drugs are nitrogen half-mustard-N7-dG (NHMG) adducts. The bulky major groove lesion NHMG, if left unrepaired, can be bypassed by translesion synthesis (TLS) DNA polymerases. However, studies of the TLS past NHMG have not been reported so far. Here, we present the first synthesis of an oligonucleotide containing a site-specific NHMG. We also report kinetic and structural characterization of human DNA polymerase η (polη) bypassing NHMG. The templating NHMG slows dCTP incorporation ∼130-fold, while it increases the misincorporation frequency ∼10-30-fold, highlighting the promutagenic nature of NHMG. A crystal structure of polη incorporating dCTP opposite NHMG shows a Watson-Crick NHMG:dCTP base pair with a large propeller twist angle. The nitrogen half-mustard moiety fits snugly into an open cleft created by the Arg61-Trp64 loop of polη, suggesting a role of the Arg61-Trp64 loop in accommodating bulky major groove adducts during lesion bypass. Overall, our results presented here to provide first insights into the TLS of the major DNA adduct formed by nitrogen mustard drugs.


Assuntos
Adutos de DNA/química , DNA Polimerase Dirigida por DNA/química , Mecloretamina/química , Oligonucleotídeos/química
14.
Biochem J ; 477(24): 4797-4810, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33258913

RESUMO

The exocyclic amines of nucleobases can undergo deamination by various DNA damaging agents such as reactive oxygen species, nitric oxide, and water. The deamination of guanine and adenine generates the promutagenic xanthine and hypoxanthine, respectively. The exocyclic amines of bases in DNA are hydrogen bond donors, while the carbonyl moiety generated by the base deamination acts as hydrogen bond acceptors, which can alter base pairing properties of the purines. Xanthine is known to base pair with both cytosine and thymine, while hypoxanthine predominantly pairs with cytosine to promote A to G mutations. Despite the known promutagenicity of the major deaminated purines, structures of DNA polymerase bypassing these lesions have not been reported. To gain insights into the deaminated-induced mutagenesis, we solved crystal structures of human DNA polymerase η (polη) catalyzing across xanthine and hypoxanthine. In the catalytic site of polη, the deaminated guanine (i.e., xanthine) forms three Watson-Crick-like hydrogen bonds with an incoming dCTP, indicating the O2-enol tautomer of xanthine involves in the base pairing. The formation of the enol tautomer appears to be promoted by the minor groove contact by Gln38 of polη. When hypoxanthine is at the templating position, the deaminated adenine uses its O6-keto tautomer to form two Watson-Crick hydrogen bonds with an incoming dCTP, providing the structural basis for the high promutagenicity of hypoxanthine.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , Purinas/química , Pareamento de Bases , Domínio Catalítico , Replicação do DNA , Humanos , Ligação de Hidrogênio , Estrutura Molecular
15.
Biochem J ; 477(9): 1601-1612, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32297632

RESUMO

Thymine:guanine base pairs are major promutagenic mismatches occurring in DNA metabolism. If left unrepaired, these mispairs can cause C to T transition mutations. In humans, T:G mismatches are repaired in part by mismatch-specific DNA glycosylases such as methyl-CpG-binding domain 4 (hMBD4) and thymine-DNA glycosylase. Unlike lesion-specific DNA glycosylases, T:G-mismatch-specific DNA glycosylases specifically recognize both bases of the mismatch and remove the thymine but only from mispairs with guanine. Despite the advances in biochemical and structural characterizations of hMBD4, the catalytic mechanism of hMBD4 remains elusive. Herein, we report two structures of hMBD4 processing T:G-mismatched DNA. A high-resolution crystal structure of Asp560Asn hMBD4-T:G complex suggests that hMBD4-mediated glycosidic bond cleavage occurs via a general base catalysis mechanism assisted by Asp560. A structure of wild-type hMBD4 encountering T:G-containing DNA shows the generation of an apurinic/apyrimidinic (AP) site bearing the C1'-(S)-OH. The inversion of the stereochemistry at the C1' of the AP-site indicates that a nucleophilic water molecule approaches from the back of the thymine substrate, suggesting a bimolecular displacement mechanism (SN2) for hMBD4-catalyzed thymine excision. The AP-site is stabilized by an extensive hydrogen bond network in the MBD4 catalytic site, highlighting the role of MBD4 in protecting the genotoxic AP-site.


Assuntos
Pareamento Incorreto de Bases , DNA Glicosilases/metabolismo , Endodesoxirribonucleases , Catálise , Domínio Catalítico , Cristalografia/métodos , DNA/química , Dano ao DNA , DNA Glicosilases/química , Reparo do DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Guanina/metabolismo , Humanos , Timina/metabolismo , Timina DNA Glicosilase/metabolismo
16.
Biochem J ; 476(4): 747-758, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709915

RESUMO

Oxaliplatin, together with cisplatin, is among the most important drugs used in cancer chemotherapy. Oxaliplatin, which contains a bulky diaminocyclohexane (DACH) moiety, kills cancer cells mainly by producing (DACH)Pt-GpG intrastrand cross-links that impede transcription. The Pt-GpG tolerance by translesion DNA synthesis (TLS) polymerases contributes to the resistance of tumors to platinum-based chemotherapy. In particular, human DNA polymerase η (Polη) readily bypasses Pt-GpG adducts. While many structural studies have addressed how TLS polymerases interact with cisplatin-DNA adducts, a structure of DNA polymerase in complex with oxaliplatin-DNA adducts has not been reported, limiting our understanding of bypass of the bulky (DACH)Pt-GpG lesion by TLS polymerases. Herein, we report the first structure of DNA polymerase bound to oxaliplatinated DNA. We determined a crystal structure of Polη incorporating dCTP opposite the 3'G of the (DACH)Pt-GpG, which provides insights into accurate, efficient bypass of the oxaliplatin-GpG adducts by TLS polymerases. In the catalytic site of Polη, the 3'G of the (DACH)Pt-GpG formed three Watson-Crick hydrogen bonds with incoming dCTP and the primer terminus 3'-OH was optimally positioned for nucleotidyl transfer. To accommodate the bulky (DACH)Pt-GpG lesion, the Val59-Trp64 loop in the finger domain of Polη shifted from the positions observed in the corresponding Polη-cisplatin-GpG and undamaged structures, suggesting that the flexibility of the Val59-Trp64 loop allows the enzyme's bypass of the (DACH)Pt-GpG adducts. Overall, the Polη-oxaliplatin-GpG structure provides a structural basis for TLS-mediated bypass of the major oxaliplatin-DNA adducts and insights into resistance to platinum-based chemotherapy in humans.


Assuntos
Adutos de DNA/química , DNA Polimerase Dirigida por DNA/química , Oxaliplatina/química , Cristalografia por Raios X , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
17.
J Am Chem Soc ; 141(11): 4584-4596, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30817143

RESUMO

Reactive oxygen species attack DNA to produce 7,8-dihyro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major lesions. The structural basis for the mutagenicity of oxoG, which induces G to T mutations, is well understood. However, the structural basis for the mutagenic potential of oxoA, which induces A to C mutations, remains poorly understood. To gain insight into oxoA-induced mutagenesis, we conducted kinetic studies of human DNA polymerases ß and η replicating across oxoA and structural studies of polß incorporating dTTP/dGTP opposite oxoA. While polη readily bypassed oxoA, it incorporated dGTP opposite oxoA with a catalytic specificity comparable to that of correct insertion, underscoring the promutagenic nature of the major oxidative adenine lesion. Polη and polß incorporated dGTP opposite oxoA ∼170-fold and ∼100-fold more efficiently than that opposite dA, respectively, indicating that the 8-oxo moiety greatly facilitated error-prone replication. Crystal structures of polß showed that, when paired with an incoming dTTP, the templating oxoA adopted an anti conformation and formed Watson-Crick base pair. When paired with dGTP, oxoA adopted a syn conformation and formed a Hoogsteen base pair with Watson-Crick-like geometry, highlighting the dual-coding potential of oxoA. The templating oxoA was stabilized by Lys280-mediated stacking and hydrogen bonds. Overall, these results provide insight into the mutagenic potential and dual-coding nature of the major oxidative adenine lesion.


Assuntos
Adenina/análogos & derivados , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênese , Adenina/metabolismo , Domínio Catalítico , DNA Polimerase Dirigida por DNA/química , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice
18.
Biochem J ; 475(3): 571-585, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29301983

RESUMO

DNA polymerases accommodate various base-pair conformations in the event of incorrect insertions. In particular, Watson-Crick-like dG:dTTP base pair has been observed at the insertion site of human DNA polymerase ß (pol ß). A potential factor contributing to the diverse conformations of base-pair mismatches is minor groove interactions. To gain insights into the effect of minor groove interactions on base-pair conformations, we generated an Asn279Ala polß mutant that cannot make minor groove contacts with an incoming nucleotide. We conducted structural and kinetic studies of Asn279Ala polß in complex with incoming dTTP and templating dG or O6-methyl-dG. The crystal structure of the Asn279Ala polß-G:T complex showed a wobble dG:dTTP base pair, indicating that the previously observed Watson-Crick-like dG:dTTP conformation was induced by the minor groove contact. In contrast, O6-methyl-dG, an analog of the enol tautomer of guanine, formed a Watson-Crick-like base pair with dTTP in the absence of the minor groove contact. These results suggest that the Watson-Crick-like G:T base pair at the insertion site is formed by the rare enol tautomers of G or T, whose population is increased by the minor groove hydrogen bond with Asn279. Kinetic studies showed that Asn279Ala mutation decreased dG:dTTP misincorporation rate six-fold in the presence of Mg2+ but increased the rate three-fold in the presence of Mn2+, highlighting the effect of minor groove interactions and metal ions on promutagenic replication by polß.


Assuntos
Domínio Catalítico/genética , Coenzimas/química , DNA Polimerase beta/química , Metais/química , Pareamento Incorreto de Bases/genética , Pareamento de Bases/genética , DNA Polimerase beta/genética , Replicação do DNA/genética , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese/genética
19.
Molecules ; 24(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569643

RESUMO

Chronic inflammation is closely associated with cancer development. One possible mechanism for inflammation-induced carcinogenesis is DNA damage caused by reactive halogen species, such as hypochlorous acid, which is released by myeloperoxidase to kill pathogens. Hypochlorous acid can attack genomic DNA to produce 8-chloro-2'-deoxyguanosine (ClG) as a major lesion. It has been postulated that ClG promotes mutagenic replication using its syn conformer; yet, the structural basis for ClG-induced mutagenesis is unknown. We obtained crystal structures and kinetics data for nucleotide incorporation past a templating ClG using human DNA polymerase ß (polß) as a model enzyme for high-fidelity DNA polymerases. The structures showed that ClG formed base pairs with incoming dCTP and dGTP using its anti and syn conformers, respectively. Kinetic studies showed that polß incorporated dGTP only 15-fold less efficiently than dCTP, suggesting that replication across ClG is promutagenic. Two hydrogen bonds between syn-ClG and anti-dGTP and a water-mediated hydrogen bond appeared to facilitate mutagenic replication opposite the major halogenated guanine lesion. These results suggest that ClG in DNA promotes G to C transversion mutations by forming Hoogsteen base pairing between syn-ClG and anti-G during DNA synthesis.


Assuntos
Dano ao DNA/efeitos dos fármacos , DNA/química , Guanina/análogos & derivados , Mutagênicos/farmacologia , DNA Polimerase beta/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/química , Guanina/farmacologia , Halogenação , Humanos , Ligação de Hidrogênio , Cinética , Modelos Biológicos , Conformação Molecular , Mutagênicos/química
20.
Molecules ; 24(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683505

RESUMO

A wide range of endogenous and exogenous alkylating agents attack DNA to generate various alkylation adducts. N7-methyl-2-deoxyguanosine (Fm7dG) is the most abundant alkylative DNA lesion. If not repaired, Fm7dG can undergo spontaneous depurination, imidazole ring-opening, or bypass by translesion synthesis DNA polymerases. Human DNA polymerase η (polη) efficiently catalyzes across Fm7dG in vitro, but its structural basis is unknown. Herein, we report a crystal structure of polη in complex with templating Fm7dG and an incoming nonhydrolyzable dCTP analog, where a 2'-fluorine-mediated transition destabilization approach was used to prevent the spontaneous depurination of Fm7dG. The structure showed that polη readily accommodated the Fm7dG:dCTP base pair with little conformational change of protein and DNA. In the catalytic site, Fm7dG and dCTP formed three hydrogen bonds with a Watson-Crick geometry, indicating that the major keto tautomer of Fm7dG is involved in base pairing. The polη-Fm7dG:dCTP structure was essentially identical to the corresponding undamaged structure, which explained the efficient bypass of the major methylated lesion. Overall, the first structure of translesion synthesis DNA polymerase bypassing Fm7dG suggests that in the catalytic site of Y-family DNA polymerases, small N7-alkylguanine adducts may be well tolerated and form the canonical Watson-Crick base pair with dCTP through their keto tautomers.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Alquilação , Pareamento de Bases , Domínio Catalítico , DNA/química , Nucleotídeos de Desoxicitosina/metabolismo , Desoxiguanosina/química , Humanos , Cinética , Metais/química , Modelos Moleculares , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA