Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nano Lett ; 24(26): 7927-7933, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885648

RESUMO

In nanoscale structures with rotational symmetry, such as quantum rings, the orbital motion of electrons combined with a spin-orbit interaction can produce a very strong and anisotropic Zeeman effect. Since symmetry is sensitive to electric fields, ring-like geometries provide an opportunity to manipulate magnetic properties over an exceptionally wide range. In this work, we show that it is possible to form rotationally symmetric confinement potentials inside a semiconductor quantum dot, resulting in electron orbitals with large orbital angular momentum and strong spin-orbit interactions. We find complete suppression of Zeeman spin splitting for magnetic fields applied in the quantum dot plane, similar to the expected behavior of an ideal quantum ring. Spin splitting reappears as orbital interactions are activated with symmetry-breaking electric fields. For two valence electrons, representing a common basis for spin-qubits, we find that modulating the rotational symmetry may offer new prospects for realizing tunable protection and interaction of spin-orbital states.

2.
Small ; 20(10): e2306350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880880

RESUMO

Nanoscale superlattice (SL) structures have proven to be effective in enhancing the thermoelectric (TE) properties of thin films. Herein, the main phase of antimony telluride (Sb2 Te3 ) thin film with sub-nanometer layers of antimony oxide (SbOx ) is synthesized via atomic layer deposition (ALD) at a low temperature of 80 °C. The SL structure is tailored by varying the cycle numbers of Sb2 Te3 and SbOx . A remarkable power factor of 520.8 µW m-1 K-2 is attained at room temperature when the cycle ratio of SbOx and Sb2 Te3 is set at 1:1000 (i.e., SO:ST = 1:1000), corresponding to the highest electrical conductivity of 339.8 S cm-1 . The results indicate that at the largest thickness, corresponding to ten ALD cycles, the SbOx layers act as a potential barrier that filters out the low-energy charge carriers from contributing to the overall electrical conductivity. In addition to enhancing the scattering of the mid-to-long-wavelength at the SbOx /Sb2 Te3 interface, the presence of the SbOx sub-layer induces the confinement effect and strain forces in the Sb2 Te3 thin film, thereby effectively enhancing the Seebeck coefficient and reducing the thermal conductivity. These findings provide a new perspective on the design of SL-structured TE materials and devices.

3.
Nature ; 554(7693): 519-522, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29443966

RESUMO

Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions have been observed in many natural phenomena such as wildfires, landslides and earthquakes. The principles of percolation theory provide one explanation for the observed patterns, and suggest that forest fragmentation is close to the critical point of percolation; simulation modelling also supports this hypothesis. The observed patterns emerge not only from random deforestation, which can be described by percolation theory, but also from a wide range of deforestation and forest-recovery regimes. Our models predict that additional forest loss will result in a large increase in the total number of forest fragments-at maximum by a factor of 33 over 50 years-as well as a decrease in their size, and that these consequences could be partly mitigated by reforestation and forest protection.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Agricultura Florestal/estatística & dados numéricos , Florestas , Mapeamento Geográfico , Árvores/crescimento & desenvolvimento , Clima Tropical , Biomassa , Imagens de Satélites
4.
Acta Neurochir (Wien) ; 166(1): 239, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814504

RESUMO

BACKGROUND: Microvascular conflicts in hemifacial spasm typically occur at the facial nerve's root exit zone. While a pure microsurgical approach offers only limited orientation, added endoscopy enhances visibility of the relevant structures without the necessity of cerebellar retraction. METHODS: After a retrosigmoid craniotomy, a microsurgical decompression of the facial nerve is performed with a Teflon bridge. Endoscopic inspection prior and after decompression facilitates optimal Teflon bridge positioning. CONCLUSIONS: Endoscope-assisted microsurgery allows a clear visualization and safe manipulation on the facial nerve at its root exit zone.


Assuntos
Espasmo Hemifacial , Cirurgia de Descompressão Microvascular , Politetrafluoretileno , Humanos , Espasmo Hemifacial/cirurgia , Cirurgia de Descompressão Microvascular/métodos , Nervo Facial/cirurgia , Craniotomia/métodos , Endoscopia/métodos , Neuroendoscopia/métodos , Microcirurgia/métodos , Feminino , Pessoa de Meia-Idade , Masculino
5.
Nano Lett ; 23(11): 4756-4761, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37227403

RESUMO

3D integration of III-V semiconductors with Si CMOS is highly attractive since it allows combining new functions such as photonic and analog devices with digital signal processing circuitry. Thus far, most 3D integration approaches have used epitaxial growth on Si, layer transfer by wafer bonding, or die-to-die packaging. Here we present low-temperature integration of InAs on W using Si3N4 template assisted selective area metal-organic vapor-phase epitaxy (MOVPE). Despite growth nucleation on polycrystalline W, we can obtain a high yield of single-crystalline InAs nanowires, as observed by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The nanowires exhibit a mobility of 690 cm2/(V s), a low-resistive, Ohmic electrical contact to the W film, and a resistivity which increases with diameter attributed to increased grain boundary scattering. These results demonstrate the feasibility for single-crystalline III-V back-end-of-line integration with a low thermal budget compatible with Si CMOS.

6.
Phys Rev Lett ; 130(8): 087003, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898111

RESUMO

We explore the energetics of microwaves interacting with a double quantum dot photodiode and show wave-particle aspects in photon-assisted tunneling. The experiments show that the single-photon energy sets the relevant absorption energy in a weak-drive limit, which contrasts the strong-drive limit where the wave amplitude determines the relevant-energy scale and opens up microwave-induced bias triangles. The threshold condition between these two regimes is set by the fine-structure constant of the system. The energetics are determined here with the detuning conditions of the double dot system and stopping-potential measurements that constitute a microwave version of the photoelectric effect.

7.
Phys Rev Lett ; 131(25): 256001, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181374

RESUMO

In this Letter, we manipulate the phase shift of a Josephson junction using a parallel double quantum dot (QD). By employing a superconducting quantum interference device, we determine how orbital hybridization and detuning affect the current-phase relation in the Coulomb blockade regime. For weak hybridization between the QDs, we find π junction characteristics if at least one QD has an unpaired electron. Notably the critical current is higher when both QDs have an odd electron occupation. By increasing the inter-QD hybridization the critical current is reduced, until eventually a π-0 transition occurs. A similar transition appears when detuning the QD levels at finite hybridization. Based on a zero-bandwidth model, we argue that both cases of phase-shift transitions can be understood considering an increased weight of states with a double occupancy in the ground state and with the Cooper pair transport dominated by local Andreev reflection.

8.
Nanotechnology ; 34(13)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36595334

RESUMO

We have performed tunnel transport spectroscopy on a quantum dot (QD) molecule proximitized by a superconducting contact. In such a system, the scattering between QD spins and Bogoliubov quasiparticles leads to the formation of Yu-Shiba-Rusinov (YSR) states within the superconducting gap. In this work, we investigate interactions appearing when one- and two-electron spin states in a double-QD energetically align with the superconducting gap edge. We find that the inter-dot spin-triplet state interacts considerably stronger with the superconductor than the corresponding singlet, pointing to stronger screening. By forming a ring molecule with a significant orbital contribution to the effectiveg-factor, we observe interactions of all four spin-orbital one-electron states with the superconductor under a weak magnetic field.

9.
Nano Lett ; 22(1): 334-339, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910870

RESUMO

We experimentally investigate the properties of one-dimensional quantum rings that form near the surface of nanowire quantum dots. In agreement with theoretical predictions, we observe the appearance of forbidden gaps in the evolution of states in a magnetic field as the symmetry of a quantum ring is reduced. For a twofold symmetry, our experiments confirm that orbital states are grouped pairwise. Here, a π-phase shift can be introduced in the Aharonov-Bohm relation by controlling the relative orbital parity using an electric field. Studying rings with higher symmetry, we note exceptionally large orbital contributions to the effective g-factor (up to 300), which are many times higher than those previously reported. These findings show that the properties of a phase-coherent system can be significantly altered by the nanostructure symmetry and its interplay with wave function parity.

10.
Phys Rev Lett ; 128(4): 040602, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148140

RESUMO

We study experimentally work fluctuations in a Szilard engine that extracts work from information encoded as the occupancy of an electron level in a semiconductor quantum dot. We show that as the average work extracted per bit of information increases toward the Landauer limit k_{B}Tln2, the work fluctuations decrease in accordance with the work fluctuation-dissipation relation. We compare the results to a protocol without measurement and feedback and show that when no information is used, the work output and fluctuations vanish simultaneously, contrasting the information-to-energy conversion case where increasing amount of work is produced with decreasing fluctuations. Our study highlights the importance of fluctuations in the design of information-to-work conversion processes.

11.
Phys Rev Lett ; 129(27): 270601, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638287

RESUMO

In this Letter, we explore the use of thermodynamic length to improve the performance of experimental protocols. In particular, we implement Landauer erasure on a driven electron level in a semiconductor quantum dot, and compare the standard protocol in which the energy is increased linearly in time with the one coming from geometric optimization. The latter is obtained by choosing a suitable metric structure, whose geodesics correspond to optimal finite-time thermodynamic protocols in the slow driving regime. We show experimentally that geodesic drivings minimize dissipation for slow protocols, with a bigger improvement as one approaches perfect erasure. Moreover, the geometric approach also leads to smaller dissipation even when the time of the protocol becomes comparable with the equilibration timescale of the system, i.e., away from the slow driving regime. Our results also illustrate, in a single-electron device, a fundamental principle of thermodynamic geometry: optimal finite-time thermodynamic protocols are those with constant dissipation rate along the process.

12.
Nature ; 531(7594): 317-22, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983538

RESUMO

Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.

13.
Acta Neurochir (Wien) ; 164(3): 833-844, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35103860

RESUMO

BACKGROUND: Microvascular decompression (MVD) success rates exceed 90% in hemifacial spasm (HFS). However, postoperative recovery patterns and durations are variable. OBJECTIVE: We aim to study factors that might influence the postoperative patterns and duration needed until final recovery. METHOD: Only patients following de-novo MVD with a minimum follow-up of 6 months were included. Overall trend of recovery was modeled. Patients were grouped according to recognizable clinical recovery patterns. Uni- and multivariable analyses were used to identify the factors affecting allocation to the identified patterns and time needed to final recovery. RESULTS: A total of 323 (92.6%) patients had > 90% symptom improvement, and 269 (77.1%) patients had complete resolution at the last follow-up. The overall trend of recovery showed steep remission within the first 6 months, followed by relapse peaking around 8 months with a second remission ~ 16 months. Five main recovery patterns were identified. Pattern analysis showed that evident proximal indentation of the facial nerve at root exit zone (REZ), males and facial palsy are associated with earlier recovery at multivariable and univariable levels. anterior inferior cerebellar artery (AICA), AICA/vertebral artery compressions and shorter disease durations are related to immediate resolution of the symptoms only on the univariable level. Time analysis showed that proximal indentation (vs. distal indentation), males and facial palsy witnessed significantly earlier recoveries. CONCLUSION: Our main finding is that in contrast to peripheral indentation, proximal indentation of the facial nerve at REZ is associated with earlier recovery. Postoperative facial palsy and AICA compressions are associated with earlier recoveries. We recommend a minimum of 1 year before evaluating the final outcome of MVD for HFS.


Assuntos
Paralisia Facial , Espasmo Hemifacial , Cirurgia de Descompressão Microvascular , Nervo Facial/cirurgia , Paralisia Facial/cirurgia , Espasmo Hemifacial/cirurgia , Humanos , Masculino , Estudos Retrospectivos , Resultado do Tratamento
14.
Opt Express ; 28(8): 11016-11022, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403621

RESUMO

It is now possible to synthesize the wurtzite crystal phase of most III-V semiconductors in the form of nanowires. This sparks interest for fundamental research and adds extra degrees of freedom for designing novel devices. However, the understanding of many properties, such as phonon dispersion, of these wurtzite semiconductors is not yet complete, despite the extensive number of studies published. The E2L and E2H phonon modes exist in the wurtzite crystal phase only (not in zinc blende) where the E2H mode has been already experimentally observed in Ga and In arsenides and phosphides, while the E2L mode has been observed in GaP, but not in GaAs or InP. In order to determine the energy of E2L in wurtzite GaAs and InP, we performed Raman scattering measurements on wurtzite GaAs and InP nanowires. We found clear evidence of the E2L phonon mode at 64 cm-1 and 54 cm-1, respectively. Polarization-dependent experiments revealed similar selection rules for both the E2L and the E2H phonon modes (as expected) where the intensity peaked with excitation and detection polarization being perpendicular to the [0001] crystallographic direction. We further find that the splitting between the E1(TO) and A1(TO) modes is around 2 cm-1 in wurtzite GaAs and below 1 cm-1 in wurtzite InP. We believe these results will be useful for a better understanding of phonons in wurtzite crystal phase of III-V semiconductors as well as for testing and improving phonon dispersion calculations.

15.
Phys Rev Lett ; 125(1): 017701, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678659

RESUMO

Subgap states in semiconducting-superconducting nanowire hybrid devices are controversially discussed as potential topologically nontrivial quantum states. One source of ambiguity is the lack of an energetically and spatially well defined tunnel spectrometer. Here, we use quantum dots directly integrated into the nanowire during the growth process to perform tunnel spectroscopy of discrete subgap states in a long nanowire segment. In addition to subgap states with a standard magnetic field dependence, we find topologically trivial subgap states that are independent of the external magnetic field, i.e., that are pinned to a constant energy as a function of field. We explain this effect qualitatively and quantitatively by taking into account the strong spin-orbit interaction in the nanowire, which can lead to a decoupling of Andreev bound states from the field due to a spatial spin texture of the confined eigenstates. This result constitutes an important step forward in the research on superconducting subgap states in nanowires, such as Majorana bound states.

16.
Nanotechnology ; 31(36): 364005, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32454471

RESUMO

Energy dispersive x-ray spectroscopy in a transmission electron microscope is often the first method employed to characterize the composition of nanowires. Ideally, it should be accurate and sensitive down to fractions of an atomic percent, and quantification results are often reported as such. However, one can often get substantial errors in accuracy even though the precision is high: for nanowires it is common for the quantified V/III atomic ratios to differ noticeably from 1. Here we analyse the origin of this systematic error in accuracy for quantification of the composition of III-V nanowires. By varying the electron illumination direction, we find electron channelling to be the primary cause, being responsible for errors in quantified V/III atomic ratio of 50%. Knowing the source of the systematic errors is required for applying appropriate corrections. Lastly, we show how channelling effects can provide information on the crystallographic position of dopants.

17.
Nanotechnology ; 31(29): 295301, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259808

RESUMO

In this manuscript, we demonstrate the potential of replacing the standard bottom anti-reflective coating (BARC) with a polymethylglutarimide (PMGI) layer for wafer-scale nanofabrication by means of deep-UV displacement talbot lithography (DTL). PMGI is functioning as a developable non-UV sensitive bottom anti-reflective coating (DBARC). After introducing the fabrication process using a standard BARC-based coating and the novel PMGI-based one, the DTL nanopatterning capabilities for both coatings are compared by means of the fabrication of etched nanoholes in a dielectric layer and metal nanodots made by lift-off. Improvement of DTL capabilities are attributed to a reduction of process complexity by avoiding the use of O2 plasma etching of the BARC layer. We show the capacity of this approach to produce nanoholes or nanodots with diameters ranging from 95 to 200 nm at a wafer-scale using only one mask and a proper exposing dose. The minimum diameter of the nanoholes is reduced from 118 to 95 nm when using the PMGI-based coating instead of the BARC-based one. The possibilities opened by the PMGI-based coating are illustrated by the successful fabrication of an array of nanoholes with sub-100 nm diameter for GaAs nanowire growth on a 2″ GaAs wafer, a 2″ nanoimprint lithography (NIL) master stamp, and an array of Au nanodots made by lift-off on a 4″ silica wafer. Therefore, DTL possess the potential for wafer-scale manufacturing of nano-engineered materials.

18.
Nano Lett ; 19(2): 1197-1203, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30618259

RESUMO

Growing GaAs nanowires with well-defined crystal structures is a challenging task, but may be required for the fabrication of future devices. In terms of crystal phase selection, the connection between theory and experiment is limited, leaving experimentalists with a trial and error approach to achieve the desired crystal structures. In this work, we present a modeling approach designed to provide the missing connection, combining classical nucleation theory, stochastic simulation, and mass transport through the seed particle. The main input parameters for the model are the flows of the growth species and the temperature of the process, giving the simulations the same flexibility as experimental growth. The output of the model can also be directly compared to experimental observables, such as crystal structure of each bilayer throughout the length of the nanowire and the composition of the seed particle. The model thus enables for observed experimental trends to be directly explored theoretically. Here, we use the model to simulate nanowire growth with varying As flows, and our results match experimental trends with a good agreement. By analyzing the data from our simulation, we find theoretical explanations for these experimental results, providing new insights into how the crystal structure is affected by the experimental parameters available for growth.

19.
Nano Lett ; 19(4): 2723-2730, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30888174

RESUMO

The opportunity to engineer III-V nanowires in wurtzite and zinc blende crystal structure allows for exploring properties not conventionally available in the bulk form as well as opening the opportunity for use of additional degrees of freedom in device fabrication. However, the fundamental understanding of the nature of polytypism in III-V nanowire growth is still lacking key ingredients to be able to connect the results of modeling and experiments. Here we show InP nanowires of both pure wurtzite and pure zinc blende grown simultaneously on the same InP [100]-oriented substrate. We find wurtzite nanowires to grow along [Formula: see text] and zinc blende counterparts along [Formula: see text]. Further, we discuss the nucleation, growth, and polytypism of our nanowires against the background of existing theory. Our results demonstrate, first, that the crystal growth conditions for wurtzite and zinc blende nanowire growth are not mutually exclusive and, second, that the interface energies predominantly determine the crystal structure of the nanowires.


Assuntos
Cristalização , Nanofios/química , Zinco/química , Tamanho da Partícula , Especificidade por Substrato , Propriedades de Superfície
20.
Nano Lett ; 18(3): 1557-1563, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29116807

RESUMO

Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA