Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2322418121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159377

RESUMO

The growing world population and increasing life expectancy are driving the need to improve the quality of blood transfusion, organ transplantation, and preservation. Here, to improve the ability of red blood cells (RBCs) for normothermic machine perfusion, a biocompatible blood silicification approach termed "shielding-augmenting RBC-in-nanoscale amorphous silica (SARNAS)" has been developed. The key to RBC surface engineering and structure augmentation is the precise control of the hydrolysis form of silicic acid to realize stabilization of RBC within conformal nanoscale silica-based exoskeletons. The formed silicified RBCs (Si-RBCs) maintain membrane/structural integrity, normal cellular functions (e.g., metabolism, oxygen-carrying capability), and enhance resistance to external stressors as well as tunable mechanical properties, resulting in nearly 100% RBC cryoprotection. In vivo experiments confirm their excellent biocompatibility. By shielding RBC surface antigens, the Si-RBCs provide universal blood compatibility, the ability for allogeneic mechanical perfusion, and more importantly, the possibility for cross-species transfusion. Being simple, reliable, and easily scalable, the SARNAS strategy holds great promise to revolutionize the use of engineered blood for future clinical applications.


Assuntos
Materiais Biocompatíveis , Eritrócitos , Dióxido de Silício , Eritrócitos/metabolismo , Dióxido de Silício/química , Materiais Biocompatíveis/química , Animais , Humanos , Perfusão/métodos , Preservação de Sangue/métodos , Transfusão de Sangue/métodos , Camundongos
2.
Adv Sci (Weinh) ; 11(5): e2305126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38054350

RESUMO

Hyperuricemia, caused by an imbalance between the rates of production and excretion of uric acid (UA), may greatly increase the mortality rates in patients with cardiovascular and cerebrovascular diseases. Herein, for fast-acting and long-lasting hyperuricemia treatment, armored red blood cell (RBC) biohybrids, integrated RBCs with proximal, cascaded-enzymes of urate oxidase (UOX) and catalase (CAT) encapsulated within ZIF-8 framework-based nanoparticles, have been fabricated based on a super-assembly approach. Each component is crucial for hyperuricemia treatment: 1) RBCs significantly increase the circulation time of nanoparticles; 2) ZIF-8 nanoparticles-based superstructure greatly enhances RBCs resistance against external stressors while preserving native RBC properties (such as oxygen carrying capability); 3) the ZIF-8 scaffold protects the encapsulated enzymes from enzymatic degradation; 4) no physical barrier exists for urate diffusion, and thus allow fast degradation of UA in blood and neutralizes the toxic by-product H2 O2 . In vivo results demonstrate that the biohybrids can effectively normalize the UA level of an acute hyperuricemia mouse model within 2 h and possess a longer elimination half-life (49.7 ± 4.9 h). They anticipate that their simple and general method that combines functional nanomaterials with living cell carriers will be a starting point for the development of innovative drug delivery systems.


Assuntos
Hiperuricemia , Estruturas Metalorgânicas , Humanos , Animais , Camundongos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Modelos Animais de Doenças , Ácido Úrico , Eritrócitos/metabolismo
3.
Metabolites ; 10(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414018

RESUMO

The activation of the Ras signaling pathway is a crucial process in hepatocarcinogenesis. Till now, no reports have scrutinized the role of dynamic metabolic changes in Ras oncogene-induced transition of the normal and precancerous liver cells to hepatocellular carcinoma in vivo. In the current study, we attempted a comprehensive investigation of Hras12V transgenic mice (Ras-Tg) by concatenating nontargeted metabolomics, transcriptomics analysis, and targeted-metabolomics incorporating [U-13C] glucose. A total of 631 peaks were detected, out of which 555 metabolites were screened. Besides, a total of 122 differently expressed metabolites (DEMs) were identified, and they were categorized and subtyped with the help of variation tendency analysis of the normal (W), precancerous (P), and hepatocellular carcinoma (T) liver tissues. Thus, the positive or negative association between metabolites and the hepatocellular carcinoma and Ras oncogene were identified. The bioinformatics analysis elucidated the hepatocarcinogenesis-associated significant metabolic pathways: glycolysis, mitochondrial citrate-malate shuttle, lipid biosynthesis, pentose phosphate pathway (PPP), cholesterol and bile acid biosynthesis, and glutathione metabolism. The key metabolites and enzymes identified in this analysis were further validated. Moreover, we confirmed the PPP, glycolysis, and conversion of pyruvate to cytosol acetyl-CoA by mitochondrial citrate-malate shuttle, in vivo, by incorporating [U-13C] glucose. In summary, the current study presented the comprehensive bioinformatics analysis, depicting the Ras oncogene-induced dynamic metabolite variations in hepatocarcinogenesis. A significant finding of our study was that the mitochondrial citrate-malate shuttle plays a crucial role in detoxification of lactic acid, maintenance of mitochondrial integrity, and enhancement of lipid biosynthesis, which, in turn, promotes hepatocarcinogenesis.

4.
Biol Sex Differ ; 11(1): 46, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792008

RESUMO

Hepatocellular carcinoma (HCC) is the most common liver cancer and is highly malignant. Male prevalence and frequent activation of the Ras signaling pathway are distinct characteristics of HCC. However, the underlying mechanisms remain to be elucidated. By exploring Hras12V transgenic mice showing male-biased hepatocarcinogenesis, we performed a high-throughput comparative proteomic analysis based on tandem-mass-tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) on the tissue samples obtained from HCC (T) and their paired adjacent precancerous (P) of Hras12V transgenic male and female mice (Ras-Tg) and normal liver (W) of wild-type male and female mice (Non-Tg). The further validation and investigation were performed using quantitative real-time PCR and western blot. Totally, 5193 proteins were quantified, originating from 5733 identified proteins. Finally, 1344 differentially expressed proteins (DEPs) (quantified in all examined samples; |ratios| ≥ 1.5, p < 0.05) were selected for further analysis. Comparison within W, P, and T of males and females indicated that the number of DEPs in males was much higher than that in females. Bioinformatics analyses showed the common and unique cluster-enriched items between sexes, indicating the common and gender-disparate pathways towards HCC. Expression change pattern analysis revealed HCC positive/negative-correlated and ras oncogene positive/negative-correlated DEPs and pathways. In addition, it showed that the ras oncogene gradually and significantly reduced the responses to sex hormones from hepatocytes to hepatoma cells and therefore shrunk the gender disparity between males and females, which may contribute to the cause of the loss of HCC clinical responses to the therapeutic approaches targeting sex hormone pathways. Additionally, gender disparity in the expression levels of key enzymes involved in retinol metabolism and terpenoid backbone/steroid biosynthesis pathways may contribute to male prevalence in hepatocarcinogenesis. Further, the biomarkers, SAA2, Orm2, and Serpina1e, may be sex differences. In conclusion, common and unique DEPs and pathways toward HCC initiated by ras oncogene from sexually dimorphic hepatocytes provide valuable and novel insights into clinical investigation and practice.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Hepáticas/metabolismo , Animais , Carcinogênese , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA