Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 234: 65-74, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616190

RESUMO

A novel, cost-effective and real-time process monitoring and control system was developed to maintain stable operation of waste-to-energy gasification process. It comprised a feedback loop control that utilized the differential temperatures of the oxidation and reduction zones in the gasifier to determine the regional heat-flow (endothermic or exothermic), to assess the availability of oxidizing agent (for instance, air or O2) at the char bed and to calculate the fuel feeding rate. Based on the correlations developed, the air-to-fuel ratio or the equivalence air ratio (ER) for air gasification could be instantaneously adjusted to maintain stable operation of the gasifier. This study demonstrated a simplification of complex reaction dynamics in the gasification process to differential temperature profiling of the gasifier. The monitoring and control system was tested for more than 70 h of continuous operation in a downdraft fixed-bed gasifier with refuse-derived fuel (RDF) prepared from municipal solid wastes (MSW). With the system, fuel feeding rate could be adjusted accurately to stabilize the operating temperature and ER in the gasifier and generate syngas with consistent properties. Significant reductions in the fluctuations of temperature profiles at oxidation and reduction zones (from higher than 100 °C to lower than 50 °C), differential temperatures (from ±200 to ±50 °C) in gasifier and the flow rate (from 16 ±â€¯6.5 to 12 ±â€¯1.8 L/min), composition of main gas components, LHV (from 6.2 ±â€¯3.1 to 5.7 ±â€¯1.6 MJ/Nm3) and tar content (from 8.0 ±â€¯9.7 to 7.5 ±â€¯4.2 g/Nm3) of syngas were demonstrated. The developed gasifier monitoring and control system is adaptable to various types (updraft, downdraft, and fluidized-bed) and scales (lab, pilot, large scale) of gasifiers with different types of fuel.


Assuntos
Resíduos de Alimentos , Resíduos Sólidos , Temperatura Alta , Temperatura
2.
Phys Chem Chem Phys ; 18(48): 32723-32734, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27878172

RESUMO

Brønsted acidic ionic liquids (BAILs) can play a dual role, as a solvent and as a catalyst, in many reactions. However, molecular details of the catalytic mechanism are poorly understood. We present here a density functional theory (DFT) study for the catalytic mechanism of the transesterification of methyl ester (ME) with trimethylolpropane (TMP), in the presence of three representative BAILs, namely, N-methylimidazole-IL, pyridinium-IL, and triethylamine-IL. The deprotonation of the BAIL cation and the transesterification step are investigated. Key inter- and intra-molecular hydrogen bonds (HBs) that govern the catalytic performance of BAILs were identified and analyzed using natural bond orbital (NBO) and atoms in molecule (AIM) methods. For the deprotonation of BAILs, it was found that the intermolecular O-HO HB between the hydroxyl group of TMP and the oxygen of the sulfonic group of BAIL was indispensable for proton transfer. DFT computed free energy barriers for the transesterification step are in excellent agreement with the experimental results only after taking into account the BAIL cation-anion interaction in terms of HBs in which the O-HO between the hydroxyl group of the anion and the oxygen of the sulfonic group of the cation was the strongest HB, suggesting the role of the anion in governing the catalytic activity of BAILs. The existence of the HBs suggested by DFT calculations was further validated using in situ FTIR experiments/ATR-FTIR.

3.
J Hazard Mater ; 360: 391-401, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30130697

RESUMO

The Zn-Al mixed metal oxide (ZnAl-MMO) with a plate-like structure was derived from Zn-Al layered double hydroxide. The ZnAl-MMO with a Zn/Al molar ratio of 3:1 exhibits superior absorption ability for H2S in a simulated coal gas at 600 ℃ due to the special structure of the ZnAl-MMO. Besides ZnS, elemental sulfur is also produced during the desulfurization process. The deactivation model could well simulate the absorption behavior of H2S. The sulfidation reaction over the sorbent shows large initial reaction rate constants (1110-5390 m3 min-1 kg-1) and low activation energy (29.5 kJ mol-1). The regeneration rate of the used sorbent can reach 99.8% under the optimum conditions. The regenerated sorbents still show high sulfur capacity (ca. 30%), implying its great application potential for industrial-scale desulfurization of the hot coal gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA