Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 23(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37571789

RESUMO

Subjective well-being (SWB) describes how well people experience and evaluate their current condition. Previous studies with electroencephalography (EEG) have shown that SWB can be related to frontal alpha asymmetry (FAA). While those studies only considered a single SWB score for each experimental session, our goal is to investigate such a correlation for individuals with a possibly different SWB every 60 or 30 s. Therefore, we conducted two experiments with 30 participants each. We used different temperature and humidity settings and asked the participants to periodically rate their SWB. We computed the FAA from EEG over different time intervals and associated the given SWB, leading to pairs of (FAA, SWB) values. After correcting the imbalance in the data with the Synthetic Minority Over-sampling Technique (SMOTE), we performed a linear regression and found a positive linear correlation between FAA and SWB. We also studied the best time interval sizes for determining FAA around each SWB score. We found that using an interval of 10 s before recording the SWB score yields the best results.


Assuntos
Eletroencefalografia , Lobo Frontal , Humanos , Eletroencefalografia/métodos , Motivação , Modelos Lineares
2.
Sensors (Basel) ; 18(4)2018 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-29642483

RESUMO

Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes.


Assuntos
Encéfalo , Comunicação , Redes de Comunicação de Computadores , Humanos , Internet
3.
Netw Neurosci ; 8(2): 418-436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952819

RESUMO

Computational studies in network neuroscience build models of communication dynamics in the connectome that help us understand the structure-function relationships of the brain. In these models, the dynamics of cortical signal transmission in brain networks are approximated with simple propagation strategies such as random walks and shortest path routing. Furthermore, the signal transmission dynamics in brain networks can be associated with the switching architectures of engineered communication systems (e.g., message switching and packet switching). However, it has been unclear how propagation strategies and switching architectures are related in models of brain network communication. Here, we investigate the effects of the difference between packet switching and message switching (i.e., whether signals are packetized or not) on the transmission completion time of propagation strategies when simulating signal propagation in mammalian brain networks. The results show that packetization in the connectome with hubs increases the time of the random walk strategy and does not change that of the shortest path strategy, but decreases that of more plausible strategies for brain networks that balance between communication speed and information requirements. This finding suggests an advantage of packet-switched communication in the connectome and provides new insights into modeling the communication dynamics in brain networks.


Communication dynamics in brain networks have been modeled with various approximations to signaling in the connectome. These approximations differ in their assumptions about propagation strategies (random walks, shortest path routing) and switching architectures (message switching, packet switching); however, their relationships in brain network communication models have been unclear so far. Here, we link them by investigating how the difference between packet and message switching (whether signals are packetized or not) affects the transmission completion time of propagation strategies in communication simulations in the connectome. We find that packetization selectively reduces the time of physiologically plausible strategies for the connectome that balance communication speed and information requirements. This study sheds light on the utility of packet switching for modeling efficient communication in brain networks.

4.
Brain Sci ; 14(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38539655

RESUMO

We focus on finding a correlation between the asymmetries of electroencephalography (EEG) signals and subjective well-being (SWB) when changed on short time scales via environmental conditions. Most research in this field focuses on frontal alpha asymmetry. We systematically examine different sensor locations and filter the sensor data into the delta band, the theta band, the alpha band, the beta band, and the gamma band, or leave the EEG signal unfiltered. We confirm that frontal alpha asymmetry is correlated to SWB. However, asymmetries between other sensors and/or filtering the data to other bands also shows a linear correlation to SWB values. Asymmetries of anterior brain regions show statistically significant results not only in the alpha band but also in the delta band and theta band, or when the data is not filtered into a specific band. Asymmetries of posterior regions show a trend to be correlated to SWB when EEG activity is higher on the opposite hemisphere and filtered into different frequency bands. Thus, our results let us conclude that focusing just on frontal sensors and the alpha band might not reveal the whole picture of brain regions and frequency bands involved in SWB.

5.
ScientificWorldJournal ; 2013: 543718, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319375

RESUMO

The concept of biologically inspired networking has been introduced to tackle unpredictable and unstable situations in computer networks, especially in wireless ad hoc networks where network conditions are continuously changing, resulting in the need of robustness and adaptability of control methods. Unfortunately, existing methods often rely heavily on the detailed knowledge of each network component and the preconfigured, that is, fine-tuned, parameters. In this paper, we utilize a new concept, called attractor perturbation (AP), which enables controlling the network performance using only end-to-end information. Based on AP, we propose a concurrent multipath traffic distribution method, which aims at lowering the average end-to-end delay by only adjusting the transmission rate on each path. We demonstrate through simulations that, by utilizing the attractor perturbation relationship, the proposed method achieves a lower average end-to-end delay compared to other methods which do not take fluctuations into account.


Assuntos
Redes de Comunicação de Computadores , Algoritmos , Redes de Comunicação de Computadores/estatística & dados numéricos , Simulação por Computador , Conceitos Matemáticos , Modelos Biológicos , Ruído , Ondas de Rádio , Tecnologia sem Fio/estatística & dados numéricos
6.
Sensors (Basel) ; 13(6): 7472-91, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23748172

RESUMO

An essential application of wireless sensor networks is to successfully respond to user queries. Query packet losses occur in the query dissemination due to wireless communication problems such as interference, multipath fading, packet collisions, etc. The losses of query messages at sensor nodes result in the failure of sensor nodes reporting the requested data. Hence, the reliable and successful dissemination of query messages to sensor nodes is a non-trivial problem. The target of this paper is to enable highly successful query delivery to sensor nodes by localized and energy-efficient discovery, and recovery of query losses. We adopt local and collective cooperation among sensor nodes to increase the success rate of distributed discoveries and recoveries. To enable the scalability in the operations of discoveries and recoveries, we employ a distributed name resolution mechanism at each sensor node to allow sensor nodes to self-detect the correlated queries and query losses, and then efficiently locally respond to the query losses. We prove that the collective discovery of query losses has a high impact on the success of query dissemination and reveal that scalability can be achieved by using the proposed approach. We further study the novel features of the cooperation and competition in the collective recovery at PHY and MAC layers, and show that the appropriate number of detectors can achieve optimal successful recovery rate. We evaluate the proposed approach with both mathematical analyses and computer simulations. The proposed approach enables a high rate of successful delivery of query messages and it results in short route lengths to recover from query losses. The proposed approach is scalable and operates in a fully distributed manner.

7.
Brain Sci ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070647

RESUMO

In this narrative review, we focus on the role of quantitative EEG technology in the diagnosis and prognosis of patients with unresponsive wakefulness syndrome and minimally conscious state. This paper is divided into two main parts, i.e., diagnosis and prognosis, each consisting of three subsections, namely, (i) resting-state EEG, including spectral power, functional connectivity, dynamic functional connectivity, graph theory, microstates and nonlinear measurements, (ii) sleep patterns, including rapid eye movement (REM) sleep, slow-wave sleep and sleep spindles and (iii) evoked potentials, including the P300, mismatch negativity, the N100, the N400 late positive component and others. Finally, we summarize our findings and conclude that QEEG is a useful tool when it comes to defining the diagnosis and prognosis of DOC patients.

8.
PLoS One ; 14(7): e0219683, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295332

RESUMO

The diagnosis and prognosis of patients with severe chronic disorders of consciousness are still challenging issues and a high rate of misdiagnosis is evident. Hence, new tools are needed for an accurate diagnosis, which will also have an impact on the prognosis. In recent years, functional Magnetic Resonance Imaging (fMRI) has been gaining more and more importance when diagnosing this patient group. Especially resting state scans, i.e., an examination when the patient does not perform any task in particular, seems to be promising for these patient groups. After preprocessing the resting state fMRI data with a standard pipeline, we extracted the correlation matrices of 132 regions of interest. The aim was to find the regions of interest which contributed most to the distinction between the different patient groups and healthy controls. We performed feature selection using a genetic algorithm and a support vector machine. Moreover, we show by using only those regions of interest for classification that are most often selected by our algorithm, we get a much better performance of the classifier.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos da Consciência/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Idoso , Encéfalo/fisiopatologia , Transtornos da Consciência/fisiopatologia , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Máquina de Vetores de Suporte
9.
Wellcome Open Res ; 3: 19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774244

RESUMO

Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. Methods. We investigated brain network architecture using resting-state fMRI data in chronic back pain patients in the UK and Japan (41 patients, 56 controls), as well as open data from USA. We applied machine learning and deep learning (conditional variational autoencoder architecture) methods to explore classification of patients/controls based on network connectivity. We then studied the network topology of the data, and developed a multislice modularity method to look for consensus evidence of modular reorganisation in chronic back pain. Results. Machine learning and deep learning allowed reliable classification of patients in a third, independent open data set with an accuracy of 63%, with 68% in cross validation of all data. We identified robust evidence of network hub disruption in chronic pain, most consistently with respect to clustering coefficient and betweenness centrality. We found a consensus pattern of modular reorganisation involving extensive, bilateral regions of sensorimotor cortex, and characterised primarily by negative reorganisation - a tendency for sensorimotor cortex nodes to be less inclined to form pairwise modular links with other brain nodes. Furthermore, these regions were found to display increased connectivity with the pregenual anterior cingulate cortex, a region known to be involved in endogenous pain control. In contrast, intraparietal sulcus displayed a propensity towards positive modular reorganisation, suggesting that it might have a role in forming modules associated with the chronic pain state. Conclusion. The results provide evidence of consistent and characteristic brain network changes in chronic pain, characterised primarily by extensive reorganisation of the network architecture of the sensorimotor cortex.

10.
Sci Rep ; 5: 15617, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26486373

RESUMO

In ribosome biogenesis, a large fraction of ribosomes is used for producing ribosomal proteins themselves. Here, we applied simulation and experimentation to determine what fraction of ribosomes should be allocated for the synthesis of ribosomal proteins to optimize cellular economy for growth. We define the "r-fraction" as the fraction of mRNA of the ribosomal protein genes out of the total mRNA, and we simulated the effect of the r-fraction on the number of ribosomes. We then empirically measured the amount of protein and RNA in fission yeast cells cultured with high and low nitrogen sources. In the cells cultured with a low nitrogen source, the r-fraction decreased from 0.46 to 0.42 with a 40% reduction of rRNA, but the reduction of the total protein was smaller at 30%. These results indicate that the r-fraction is internally controlled to optimize the efficiency of protein synthesis at a limited cellular cost.


Assuntos
Nitrogênio/metabolismo , Proteínas Ribossômicas/biossíntese , Ribossomos/genética , Regulação Fúngica da Expressão Gênica , RNA Mensageiro/biossíntese , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA