Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Pflugers Arch ; 475(11): 1343-1355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37695396

RESUMO

The voltage-gated sodium channel NaV1.8 is prominently expressed in the soma and axons of small-caliber sensory neurons, and pathogenic variants of the corresponding gene SCN10A are associated with peripheral pain and autonomic dysfunction. While most disease-associated SCN10A variants confer gain-of-function properties to NaV1.8, resulting in hyperexcitability of sensory neurons, a few affect afferent excitability through a loss-of-function mechanism. Using whole-exome sequencing, we here identify a rare heterozygous SCN10A missense variant resulting in alteration p.V1287I in NaV1.8 in a patient with a 15-year history of progressively worsening temperature dysregulation in the distal extremities, particularly in the feet. Further symptoms include increasingly intensifying tingling and numbness in the fingers and increased sweating. To assess the impact of p.V1287I on channel function, we performed voltage-clamp recordings demonstrating that the alteration confers loss- and gain-of-function characteristics to NaV1.8 characterized by a right-shifted voltage dependence of channel activation and inactivation. Current-clamp recordings from transfected mouse dorsal root ganglion neurons further revealed that NaV1.8-V1287I channels broaden the action potentials of sensory neurons and increase their firing rates in response to depolarizing current stimulations, indicating a gain-of-function mechanism of the variant at the cellular level in a heterozygous setting. The data support the hypothesis that the properties of NaV1.8 p.V1287I are causative for the patient's symptoms and that nonpainful peripheral paresthesias should be considered part of the clinical spectrum of NaV1.8-associated disorders.

2.
FASEB J ; 33(3): 3693-3703, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509130

RESUMO

A 13 aa residue voltage-gated sodium (NaV) channel inhibitor peptide, Pn, containing 2 disulfide bridges was designed by using a chimeric approach. This approach was based on a common pharmacophore deduced from sequence and secondary structural homology of 2 NaV inhibitors: Conus kinoshitai toxin IIIA, a 14 residue cone snail peptide with 3 disulfide bonds, and Phoneutria nigriventer toxin 1, a 78 residue spider toxin with 7 disulfide bonds. As with the parent peptides, this novel NaV channel inhibitor was active on NaV1.2. Through the generation of 3 series of peptide mutants, we investigated the role of key residues and cyclization and their influence on NaV inhibition and subtype selectivity. Cyclic PnCS1, a 10 residue peptide cyclized via a disulfide bond, exhibited increased inhibitory activity toward therapeutically relevant NaV channel subtypes, including NaV1.7 and NaV1.9, while displaying remarkable serum stability. These peptides represent the first and the smallest cyclic peptide NaV modulators to date and are promising templates for the development of toxin-based therapeutic agents.-Peigneur, S., Cheneval, O., Maiti, M., Leipold, E., Heinemann, S. H., Lescrinier, E., Herdewijn, P., De Lima, M. E., Craik, D. J., Schroeder, C. I., Tytgat, J. Where cone snails and spiders meet: design of small cyclic sodium-channel inhibitors.


Assuntos
Caramujos/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/metabolismo , Aranhas/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Oócitos/metabolismo , Peptídeos/farmacologia , Xenopus laevis/metabolismo
3.
Mar Drugs ; 17(7)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269696

RESUMO

Cyclic µ-conotoxin PIIIA, a potent blocker of skeletal muscle voltage-gated sodium channel NaV1.4, is a 22mer peptide stabilized by three disulfide bonds. Combining electrophysiological measurements with molecular docking and dynamic simulations based on NMR solution structures, we investigated the 15 possible 3-disulfide-bonded isomers of µ-PIIIA to relate their blocking activity at NaV1.4 to their disulfide connectivity. In addition, three µ-PIIIA mutants derived from the native disulfide isomer, in which one of the disulfide bonds was omitted (C4-16, C5-C21, C11-C22), were generated using a targeted protecting group strategy and tested using the aforementioned methods. The 3-disulfide-bonded isomers had a range of different conformational stabilities, with highly unstructured, flexible conformations with low or no channel-blocking activity, while more constrained molecules preserved 30% to 50% of the native isomer's activity. This emphasizes the importance and direct link between correct fold and function. The elimination of one disulfide bond resulted in a significant loss of blocking activity at NaV1.4, highlighting the importance of the 3-disulfide-bonded architecture for µ-PIIIA. µ-PIIIA bioactivity is governed by a subtle interplay between an optimally folded structure resulting from a specific disulfide connectivity and the electrostatic potential of the conformational ensemble.


Assuntos
Conotoxinas/farmacocinética , Canal de Sódio Disparado por Voltagem NAV1.4/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Conotoxinas/química , Dissulfetos/química , Isomerismo , Simulação de Acoplamento Molecular , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
4.
J Neurosci ; 36(45): 11435-11439, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27911746

RESUMO

Cold temperature detection involves the process of sensory transduction in cutaneous primary sensory nerve terminals, which converts thermal stimuli into depolarizations of the membrane. This transformation into electrical signals is followed by the subsequent propagation of action potentials in cold-sensitive afferent nerve fibers. A large array of ion channels shapes this process; however, the precise contribution of specific ion channel subtypes to cold perception and cold pain remains elusive. This review aims at giving an update on our current understanding of the role played by TRPs, leak K+ and voltage-gated Na+ and K+ channels in the transduction of cold by nociceptors and in cold-induced pain.


Assuntos
Temperatura Baixa , Canais Iônicos/metabolismo , Nociceptores/fisiologia , Percepção da Dor/fisiologia , Dor/fisiopatologia , Sensação Térmica/fisiologia , Animais , Medicina Baseada em Evidências , Humanos , Ativação do Canal Iônico/fisiologia , Plasticidade Neuronal/fisiologia
5.
Biochem Biophys Res Commun ; 482(4): 1135-1140, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27916464

RESUMO

The neurotoxic cone snail peptide µ-GIIIA specifically blocks skeletal muscle voltage-gated sodium (NaV1.4) channels. The related conopeptides µ-PIIIA and µ-SIIIA, however, exhibit a wider activity spectrum by also inhibiting the neuronal NaV channels NaV1.2 and NaV1.7. Here we demonstrate that those µ-conopeptides with a broader target range also antagonize select subtypes of voltage-gated potassium channels of the KV1 family: µ-PIIIA and µ-SIIIA inhibited KV1.1 and KV1.6 channels in the nanomolar range, while being inactive on subtypes KV1.2-1.5 and KV2.1. Construction and electrophysiological evaluation of chimeras between KV1.5 and KV1.6 revealed that these toxins block KV channels involving their pore regions; the subtype specificity is determined in part by the sequence close to the selectivity filter but predominantly by the so-called turret domain, i.e. the extracellular loop connecting the pore with transmembrane segment S5. Conopeptides µ-SIIIA and µ-PIIIA, thus, are not specific for NaV channels, and the known structure of some KV channel subtypes may provide access to structural insight into the molecular interaction between µ-conopeptides and their target channels.


Assuntos
Conotoxinas/química , Canal de Potássio Kv1.1/antagonistas & inibidores , Canal de Potássio Kv1.2/antagonistas & inibidores , Canal de Potássio Kv1.4/antagonistas & inibidores , Canal de Potássio Kv1.6/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Eletrofisiologia , Células HEK293 , Humanos , Neurônios/metabolismo , Peptídeos/química , Domínios Proteicos
6.
Pflugers Arch ; 468(1): 99-110, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26383867

RESUMO

Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 µM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8(-/-)), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure.


Assuntos
Potenciais de Ação , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Gânglios Espinais/citologia , Camundongos , Neurônios/fisiologia
7.
Biochim Biophys Acta ; 1838(5): 1412-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24513256

RESUMO

Reactive oxygen species (ROS) and reactive oxygen intermediates (ROI) play crucial roles in physiological processes. While excessive ROS damages cells, small fluctuations in ROS levels represent physiological signals important for vital functions. Despite the physiological importance of ROS, many fundamental questions remain unanswered, such as which types of ROS occur in cells, how they distribute inside cells, and how long they remain in an active form. The current study presents a ratiometric sensor of intracellular ROS levels based on genetically engineered voltage-gated sodium channels (roNaV). roNaV can be used for detecting oxidative modification that occurs near the plasma membrane with a sensitivity similar to existing fluorescence-based ROS sensors. Moreover, roNaV has several advantages over traditional sensors because it does not need excitation light for sensing, and thus, can be used to detect phototoxic cellular modifications. In addition, the ROS dynamic range of roNaV is easily manipulated in real time by means of the endogenous channel inactivation mechanism. Measurements on ROS liberated from intracellular Lucifer Yellow and genetically encoded KillerRed have revealed an assessment of ROS lifetime in individual mammalian cells. Flashlight-induced ROS concentration decayed with two major time constants of about 10 and 1000 ms.


Assuntos
Membrana Celular/metabolismo , Ativação do Canal Iônico , Espécies Reativas de Oxigênio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Mutação , Oxirredução , Fótons , Canais de Sódio Disparados por Voltagem/genética
8.
Pflugers Arch ; 467(12): 2423-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25916202

RESUMO

SCN11A encodes the voltage-gated sodium channel NaV1.9, which deviates most strongly from the other eight NaV channels expressed in mammals. It is characterized by resistance to the prototypic NaV channel blocker tetrodotoxin and exhibits slow activation and inactivation gating. Its expression in dorsal root ganglia neurons suggests a role in motor or pain signaling functions as also recently demonstrated by the occurrence of various mutations in human SCN11A leading to altered pain sensation syndromes. The systematic investigation of human NaV1.9, however, is severely hampered because of very poor heterologous expression in host cells. Using patch-clamp and two-electrode voltage-clamp methods, we show that this limitation is caused by the C-terminal structure of NaV1.9. A chimera of NaV1.9 harboring the C terminus of NaV1.4 yields functional expression not only in neuronal cells but also in non-excitable cells, such as HEK 293T or Xenopus oocytes. The major functional difference of the chimeric channel with respect to NaV1.9 is an accelerated activation and inactivation. Since the entire transmembrane domain is preserved, it is suited for studying pharmacological properties of the channel and the functional impact of disease-causing mutations. Moreover, we demonstrate how mutation S360Y makes NaV1.9 channels sensitive to tetrodotoxin and saxitoxin and that the unusual slow open-state inactivation of NaV1.9 is also mediated by the IFM (isoleucine-phenylalanine-methionine) inactivation motif located in the linker connecting domains III and IV.


Assuntos
Ativação do Canal Iônico , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.9/química , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Bloqueadores dos Canais de Sódio/farmacologia , Especificidade da Espécie , Xenopus
10.
Chembiochem ; 15(18): 2754-65, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25376613

RESUMO

The oxidation of the conotoxin µ-SIIIA in different ionic liquids was investigated, and the results were compared with those obtained in [C2 mim][OAc]. Conversion of the reduced precursor into the oxidized product was observed in the protic ILs methyl- and ethylammonium formate (MAF and EAf, respectively), whereas choline dihydrogenphosphate and Ammoeng 110 failed to yield folded peptide. However, the quality and yield of the peptide obtained in MAF and EAF were lower than in the case of the product from [C2 mim][OAc]. Reaction conditions (temperature, water content) also had an impact on peptide conversion. A closer look at the activities of µ-SIIIA versions derived from an up-scaled synthesis in [C2 mim][OAc] revealed a significant loss of the effect on ion channel NaV 1.4 relative to the buffer-oxidized peptide, whereas digestion of either µ-SIIIA product by trypsin was unaffected. This was attributed to adherence of ions from the IL to the peptide, because the disulfide connectivity is basically the same for the differentially oxidized µ-SIIIA versions.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Conotoxinas/química , Cisteína/química , Líquidos Iônicos/química , Peptídeos/química , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Conotoxinas/farmacologia , Caramujo Conus/química , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Oxirredução , Peptídeos/farmacologia , Dobramento de Proteína , Temperatura
13.
Front Cell Neurosci ; 16: 817198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401116

RESUMO

Induced pluripotent stem cell (iPSC)-based generation of tyrosine hydroxylase-positive (TH+) dopaminergic neurons (DNs) is a powerful method for creating patient-specific in vitro models to elucidate mechanisms underlying Parkinson's disease (PD) at the cellular and molecular level and to perform drug screening. However, currently available differentiation paradigms result in highly heterogeneous cell populations, often yielding a disappointing fraction (<50%) of the PD-relevant TH+ DNs. To facilitate the targeted analysis of this cell population and to characterize their electrophysiological properties, we employed CRISPR/Cas9 technology and generated an mCherry-based human TH reporter iPSC line. Subsequently, reporter iPSCs were subjected to dopaminergic differentiation using either a "floor plate protocol" generating DNs directly from iPSCs or an alternative method involving iPSC-derived neuronal precursors (NPC-derived DNs). To identify the strategy with the highest conversion efficiency to mature neurons, both cultures were examined for a period of 8 weeks after triggering neuronal differentiation by means of immunochemistry and single-cell electrophysiology. We confirmed that mCherry expression correlated with the expression of endogenous TH and that genetic editing did neither affect the differentiation process nor the endogenous TH expression in iPSC- and NPC-derived DNs. Although both cultures yielded identical proportions of TH+ cells (≈30%), whole-cell patch-clamp experiments revealed that iPSC-derived DNs gave rise to larger currents mediated by voltage-gated sodium and potassium channels, showed a higher degree of synaptic activity, and fired trains of mature spontaneous action potentials more frequently compared to NPC-derived DNs already after 2 weeks in differentiation. Moreover, spontaneous action potential firing was more frequently detected in TH+ neurons compared to the TH- cells, providing direct evidence that these two neuronal subpopulations exhibit different intrinsic electrophysiological properties. In summary, the data reveal substantial differences in the electrophysiological properties of iPSC-derived TH+ and TH- neuronal cell populations and that the "floor plate protocol" is particularly efficient in generating electrophysiologically mature TH+ DNs, which are the most vulnerable neuronal subtype in PD.

14.
Front Mol Neurosci ; 15: 1076187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618826

RESUMO

The enteric nervous system (ENS) is a complex neuronal network organized in ganglionated plexuses that extend along the entire length of the gastrointestinal tract. Largely independent of the central nervous system, the ENS coordinates motility and peristalsis of the digestive tract, regulates secretion and absorption, and is involved in immunological processes. Electrophysiological methods such as the patch-clamp technique are particularly suitable to study the function of neurons as well as the biophysical parameters of the underlying ion channels under both physiological and pathophysiological conditions. However, application of the patch-clamp method to ENS neurons remained difficult because they are embedded in substantial tissue layers that limit access to and targeted manipulation of these cells. Here, we present a robust step-by-step protocol that involves isolation of ENS neurons from adult mice, culturing of the cells, their transfection with plasmid DNA, and subsequent electrophysiological characterization of individual neurons in current-clamp and voltage-clamp recordings. With this protocol, ENS neurons can be prepared, transfected, and electrophysiologically characterized within 72 h. Using isolated ENS neurons, we demonstrate the feasibility of the approach by functional overexpression of recombinant voltage-gated NaV1.9 mutant channels associated with hereditary sensory and autonomic neuropathy type 7 (HSAN-7), a disorder characterized by congenital analgesia and severe constipation that can require parenteral nutrition. Although our focus is on the electrophysiological evaluation of isolated ENS neurons, the presented methodology is also useful to analyze molecules other than sodium channels or to apply alternative downstream assays including calcium imaging, proteomic and nucleic acid approaches, or immunochemistry.

15.
Biochim Biophys Acta Biomembr ; 1864(10): 183996, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35753394

RESUMO

The treatment of invasive drug-resistant and potentially life-threatening fungal infections is limited to few therapeutic options that are usually associated with severe side effects. The development of new effective antimycotics with a more tolerable side effect profile is therefore of utmost clinical importance. Here, we used a combination of complementary in vitro assays and structural analytical methods to analyze the interaction of the de novo antimicrobial peptide VG16KRKP with the sterol moieties of biological cell membranes. We demonstrate that VG16KRKP disturbs the structural integrity of fungal membranes both invitro and in model membrane system containing ergosterol along with phosphatidylethanolamine lipid and exhibits broad-spectrum antifungal activity. As revealed by systematic structure-function analysis of mutated VG16KRKP analogs, a specific pattern of basic and hydrophobic amino acid side chains in the primary peptide sequence determines the selectivity of VG16KRKP for fungal specific membranes.


Assuntos
Antifúngicos , Ergosterol , Antifúngicos/química , Antifúngicos/farmacologia , Membrana Celular/metabolismo , Ergosterol/química , Peptídeos/química , Peptídeos/farmacologia , Esteróis/metabolismo
16.
Front Mol Neurosci ; 11: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29410612

RESUMO

Oxidized phospholipids (OxPL) like oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) were recently identified as novel proalgesic targets in acute and chronic inflammatory pain. These endogenous chemical irritants are generated in inflamed tissue and mediate their pain-inducing function by activating the transient receptor potential channels TRPA1 and TRPV1 expressed in sensory neurons. Notably, prototypical therapeutics interfering with OxPL were shown to inhibit TRP channel activation and pain behavior. Here, we asked how OxPL excite primary sensory neurons of dorsal root ganglia (DRG neurons from mice of either sex). Acute stimulation of sensory neurons with the prototypical OxPL 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) evoked repetitive calcium spikes in small-diameter neurons. As NaV1.9, a voltage-gated sodium channel involved in nociceptor excitability, was previously shown to be essential for the generation of calcium spikes in motoneurons, we asked if this channel is also important for OxPL mediated calcium spike and action potential generation in nociceptors. In wild-type and NaV1.9-deficient neurons, the action potential firing rate and the calcium spike frequency to an acute PGPC stimulus was similar. When preincubated with inflammatory mediators, both, the action potential firing rate and the calcium spike frequency were markedly increased in response to an acute PGPC stimulus. However, this potentiating effect was completely lost in NaV1.9-deficient small-diameter neurons. After treatment with inflammatory mediators, the resting membrane potential of NaV1.9 KO neurons was slightly more negative than that of wild-type control neurons. This suggests that NaV1.9 channels are active under this condition and therefore increases the ease with which action potentials are elicited after OxPL stimulation. In summary, our data suggest that NaV1.9 has a switch function to potentiate the receptor potentials induced by OxPL under inflammatory conditions. Since human NaV1.9 has been shown to mediate painful and painless channelopathies, this study provides new insights into the mechanism by which NaV1.9 amplifies stimuli of endogenous irritants under inflammatory conditions.

18.
Sci Rep ; 7: 46003, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378799

RESUMO

Photonic experiments are of key importance in life sciences but light-induced side effects are serious confounding factors. Here we introduce roNaV2, an engineered voltage-gated Na+ channel harboring a selenocysteine in its inactivation motif, as a non-photonic, sensitive, gateable, and reversible sensor for membrane-delimited reactive species. roNaV2 allows for the assessment of chemical modification induced in fluorescence microscopy settings with high sensitivity and time resolution and it demonstrates the usefulness of ion channels as highly sensitive reporters of membrane processes.


Assuntos
Membrana Celular/metabolismo , Fótons , Espécies Reativas de Oxigênio/metabolismo , Selenocisteína/metabolismo , Canais de Sódio/metabolismo , Animais , Células HEK293 , Humanos , Luz , Oxirredução , Ratos , Fatores de Tempo
19.
FEBS Lett ; 580(5): 1360-4, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-16458302

RESUMO

Several families of peptide toxins from cone snails affect voltage-gated sodium (Na(V)) channels: mu-conotoxins block the pore, delta-conotoxins inhibit channel inactivation, and muO-conotoxins inhibit Na(V) channels by an unknown mechanism. The only currently known muO-conotoxins MrVIA and MrVIB from Conus marmoreus were applied to cloned rat skeletal muscle (Na(V)1.4) and brain (Na(V)1.2) sodium channels in mammalian cells. A systematic domain-swapping strategy identified the C-terminal pore loop of domain-3 as the major determinant for Na(V)1.4 being more potently blocked than Na(V)1.2 channels. muO-conotoxins therefore show an interaction pattern with Na(V) channels that is clearly different from the related mu- and delta-conotoxins, indicative of a distinct molecular mechanism of channel inhibition.


Assuntos
Conotoxinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Animais , Sítios de Ligação , Química Encefálica , Clonagem Molecular , Conotoxinas/metabolismo , Caramujo Conus , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2 , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/química , Canais de Sódio/genética
20.
FEBS Lett ; 579(18): 3881-4, 2005 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-15990094

RESUMO

Various neurotoxic peptides modulate voltage-gated sodium (Na(V)) channels and thereby affect cellular excitability. Delta-conotoxins from predatory cone snails slow down inactivation of Na(V) channels, but their interaction site and mechanism of channel modulation are unknown. Here, we show that delta-conotoxin SVIE from Conus striatus interacts with a conserved hydrophobic triad (YFV) in the domain-4 voltage sensor of Na(V) channels. This site overlaps with that of the scorpion alpha-toxin Lqh-2, but not with the alpha-like toxin Lqh-3 site. Delta-SVIE functionally competes with Lqh-2, but exhibits strong cooperativity with Lqh-3, presumably by synergistically trapping the voltage sensor in its "on" position.


Assuntos
Conotoxinas/metabolismo , Canais de Sódio/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Cisteína/química , Eletrofisiologia , Humanos , Dados de Sequência Molecular , Proteínas Musculares/metabolismo , Neurotoxinas/química , Ligação Proteica , Ratos , Venenos de Escorpião/química , Venenos de Escorpião/metabolismo , Escorpiões , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA