Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(36): 7680-7690, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39213621

RESUMO

We present a non-Dyson fourth-order algebraic diagrammatic construction formulation of the electron propagator, featuring the distinct IP- and EA-ADC(4) schemes for the treatment of ionization and electron attachment processes. The algebraic expressions have been derived automatically using the intermediate state representation approach and implemented in the Q-Chem quantum-chemical program package. The performance of the novel methods is assessed with respect to high-level reference data for ionization potentials and electron affinities of closed- and open-shell systems. While only minor improvements over the corresponding third-order methods are observed for one-hole ionization and one-particle electron attachment processes from closed-shell systems (MAEIP-ADC(4) = 0.27 eV and MAEEA-ADC(4) = 0.05 eV), a significantly enhanced performance is found in case of open-shell reference states (MAEIP-ADC(4) = 0.11 eV and MAEEA-ADC(4) = 0.02 eV). A particularly appealing feature of the novel methods is their accurate treatment of satellite transitions. For closed-shell reference states, we obtain accuracies of MAEIP-ADC(4) = 0.81 eV and MAEEA-ADC(4) = 0.27 eV, while in case of open-shell reference states, mean absolute errors of MAEIP-ADC(4) = 0.15 eV and MAEEA-ADC(4) = 0.27 eV are found.

2.
J Am Chem Soc ; 145(27): 14811-14822, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364887

RESUMO

The Hula-Twist (HT) photoreaction represents a fundamental photochemical pathway for bond isomerizations and is defined by the coupled motion of a double bond and an adjacent single bond. This photoreaction has been suggested as the defining motion for a plethora of light-responsive chromophores such as retinal within opsins, coumaric acid within photoactive yellow protein, or vitamin D precursors, and stilbenes in solution. However, due to the fleeting character of HT photoproducts a direct experimental observation of this coupled molecular motion was severely hampered until recently. To solve this dilemma, the Dube group has designed a molecular framework able to deliver unambiguous experimental evidence of the HT photoreaction. Using sterically crowded atropisomeric hemithioindigo (HTI) the HT photoproducts are rendered thermally stable and can be observed directly after their formation. However, following the ultrafast excited state process of the HT photoreaction itself has not been achieved so far and thus crucial information for an elementary understanding is still missing. In this work, we present the first ultrafast spectroscopy study of the HT photoreaction in HTI and probe the competition between different excited state processes. Together with extensive excited state calculations a detailed mechanistic picture is developed explaining the significant solvent effects on the HT photoreaction and revealing the intricate interplay between productive isomerizations and unproductive twisted intramolecular charge transfer (TICT) processes. With this study essential insights are thus gained into the mechanism of complex multibond rotations in the excited state, which will be of primary importance for further developments in this field.

3.
J Phys Chem A ; 127(41): 8723-8733, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37816160

RESUMO

The Cotton-Mouton effect is theoretically investigated for a selected set of molecules by using a novel computational methodology based on algebraic diagrammatic construction (ADC) schemes in the intermediate state representation (ISR) formulation. Therefore, the electronic contributions to the frequency-dependent polarizabilities and, for the first time, to the magnetizabilities as well as mixed electric and magnetic hypermagnetizabilities have been computed in the ADC/ISR framework. In addition to calculation of the Cotton-Mouton constant and the birefringence, the gauge origin dependence of the computed tensors and the applied methodology are thoroughly investigated. The new ADC/ISR methodology, employing the recently presented responsefun package, is applied to a test set of Ne and small molecules (H2, HF, O2, CO2, and benzene) and compared to data from the experiment as well as other ab initio methods. The presented theoretical ab initio ADC/ISR approach is a substantial extension of the available computational methods for the investigation of complex nonlinear properties, however, with a gauge origin dependence inherent to the method that decreases with increasing perturbation order.

4.
Chemphyschem ; 21(10): 987-994, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32212357

RESUMO

The computed fluoride ion affinity (FIA) is a valuable descriptor to assess the Lewis acidity of a compound. Despite its widespread use, the varying accuracy of applied computational models hampers the broad comparability of literature data. Herein, we evaluate the performance of selected methods (like DLPNO-CCSD(T)) in FIA computations against CCSD(T)/CBS data and guide for the choice of suitable density functionals that allow the treatment of larger Lewis acids. Based on the benchmarked methods, we computed an extensive set of gas-phase and solvation corrected FIA, that is covering group 13-16 elements featuring moderate to strong electron-withdrawing substituents (190 entries). It permits an unbiased comparison of FIA over a significant fraction of the periodic table, serves as a source of reference for future synthetic or theoretical studies, and allows to derive some simple design principles for strong fluoride ion acceptors. Finally, the manuscript includes a tutorial section for the computation of FIA with and without the consideration of solvation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA