RESUMO
Global climate changes undermine the effectiveness of 'set and forget' phytosanitary regulations. Uncertainties in future greenhouse gas emission profiles render it impossible to accurately forecast future climate, thus limiting the ability to make long-term biosecurity policy decisions. Agile adaptive biosecurity frameworks are necessary to address these climatic uncertainties and to effectively manage current and emerging threats. This paper provides opinions on these issues and presents a case study focusing on the threats posed by Aleurocanthus woglumi (citrus blackfly) to Europe. It delves into the biology of the species, its preferred hosts, and how climate change could affect its spread. Utilizing a bioclimatic niche model, the paper estimates the potential distribution of A. woglumi in Europe under recent historical and medium-term future conditions, revealing a potential expansion of its range into higher elevations and more northern regions by the year 2050. The main aim is to leverage the results to showcase the system's sensitivity to likely emission scenarios, essentially stress-testing for potential emerging threats to biosecurity policies and phytosanitary regulations. The results underscore the significance of considering global change factors in pest risk assessment and phytosanitary regulations for effective risk mitigation. Consequently, adaptive biosecurity measures are essential, encompassing horizon scanning, enhanced targeted surveillance, periodic updates of risk assessments, and adjustments to regulations. For instance, biosecurity risk management could involve establishing a set of trigger conditions to prompt updates of risk assessments, such as identifying a zone where the confirmed establishment of a pest signifies a significant change in the pest risk profile. For jurisdictions containing areas modeled as being climatically suitable under historical climates or future climate scenarios, we caution against importing untreated host materials from regions that are likely to become suitable habitats for A. woglumi in the future. Moreover, it is important to consider both present and future climate change scenarios when making decisions to effectively address the threats posed by invasive species. In the case of highly impactful invasives, investing in preemptive biological control measures may prove to be a prudent choice.
Assuntos
Biosseguridade , Mudança Climática , Animais , Espécies Introduzidas , Ecossistema , Medição de RiscoRESUMO
The box tree moth (Cydalima perspectalis Walker, 1859; Lepidoptera: Crambidae) is an invasive species naturally distributed in Asia. The caterpillars in all developmental stages cause damage through defoliation of plants, and ultimately the death of the plant itself may occur. It is possible to recognize this species by its silk barriers and threads, and in the case of an intense attack, the entire plant will be covered with them. In Europe, this species' presence was first recorded in 2007 in Germany and the Netherlands, and it is now widely distributed. In Croatia, its existence was first recorded in 2012, in Istria, while substantial damages were recorded in 2013. This work aimed to determine the morphological variability of C. perspectalis from Croatia and assess its invasive character, the possibility of flight, and the risk of further spread. The methods of geometric morphometrics were used as the analysis of wing shape. A total of 269 moths from different locations in Croatia were collected, the upper wings of males and females were analyzed using 14 landmarks. Significant differences in wing shapes between terrestrial and coastal populations were found, as well as subtle wing shape sexual dimorphism. The implications of this variability in species invasiveness and capacity of spread are discussed in this paper. We also extrapolate the usefulness of our results and suggest strategies for predicting and managing invasive species.
RESUMO
The Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has been a serious quarantine pest to maize in Europe since the mid-1990s. The integrated pest management of WCR requires an accurate knowledge of the factors that contribute most to risks of crop damage, as well as knowledge of effective area-wide strategies based on agronomic measures, such as crop rotation. In Italy and Croatia, agronomic and cultural factors in fields damaged by WCR were evaluated through a long-term survey. Based on the survey results, high-WCR densities contribute most to risks of damage to maize. Extensive field research in north-eastern Italy compared large areas of continuous maize production with areas under different crop rotation systems (i.e., a structural one with one-time maize planting in a three-year rotation and a flexible one with continuous maize planting interrupted when beetle populations exceed the threshold). The objective was to evaluate the effectiveness of different rotation regimes as possible best practices for WCR management. Captures of beetles in yellow sticky traps, root damage, larval densities, and damage to maize plants (e.g., lodging) were assessed at the center of each area. The results demonstrated the both structural and flexible crop rotation systems were effective strategies for maintaining WCR below damage threshold densities without the need for insecticides.
RESUMO
Western corn rootworm (WCR), or Diabrotica virgifera virgifera LeConte, became a very serious quarantine maize pest in Europe in the mid-1990s. Between 1995 and 2010, European countries were involved in international projects to share information and plan common research for integrated pest management (IPM) implementation. Since 2011, however, common efforts have declined, and an overview of WCR population spread, density, and research is in serious need of update. Therefore, we retained that it was necessary to (1) summarize the research activities carried out in the last 12 years in various countries and the research topics addressed, and analyze how these activities have contributed to IPM for WCR and (2) present the current distribution of WCR in the EU and analyze the current population levels in different European countries, focusing on different management strategies. A review of scientific papers published from 2008 to 2020, in addition to direct interviews with experts in charge of WCR management in a range of European countries, was conducted. Over the past 12 years, scientists in Europe have continued their research activities to investigate various aspects of WCR management by implementing several approaches to WCR control. A considerable amount of new knowledge has been produced, contributing to the development of pest management strategies applicable in EU farming systems. Among the 10 EU countries analyzed, there is no country reporting economic damage on a large scale. Thanks to intensive research leading to specific agricultural practices and the EU Common Agricultural Policy, there are crop-rotation-based solutions that can adequately control this pest avoiding insecticide use.
RESUMO
Climate change and global warming are of great concern to agriculture worldwide and are among the most discussed issues in today's society. Climate parameters such as increased temperatures, rising atmospheric CO2 levels, and changing precipitation patterns have significant impacts on agricultural production and on agricultural insect pests. Changes in climate can affect insect pests in several ways. They can result in an expansion of their geographic distribution, increased survival during overwintering, increased number of generations, altered synchrony between plants and pests, altered interspecific interaction, increased risk of invasion by migratory pests, increased incidence of insect-transmitted plant diseases, and reduced effectiveness of biological control, especially natural enemies. As a result, there is a serious risk of crop economic losses, as well as a challenge to human food security. As a major driver of pest population dynamics, climate change will require adaptive management strategies to deal with the changing status of pests. Several priorities can be identified for future research on the effects of climatic changes on agricultural insect pests. These include modified integrated pest management tactics, monitoring climate and pest populations, and the use of modelling prediction tools.
RESUMO
Climate change and invasive species are major environmental issues facing the world today. They represent the major threats for various types of ecosystems worldwide, mainly managed ecosystems such as agriculture. This study aims to examine the link between climate change and the biological invasion of insect pest species. Increased international trade systems and human mobility have led to increasing introduction rates of invasive insects while climate change could decrease barriers for their establishment and distribution. To mitigate environmental and economic damage it is important to understand the biotic and abiotic factors affecting the process of invasion (transport, introduction, establishment, and dispersal) in terms of climate change. We highlight the major biotic factors affecting the biological invasion process: diet breadth, phenological plasticity, and lifecycle strategies. Finally, we present alien insect pest invasion management that includes prevention, eradication, and assessment of the biological invasion in the form of modelling prediction tools.
RESUMO
The Asian ladybird (Harmonia axyridis Pallas), native to Asia, is one of the 100 most invasive species in the world and has spread worldwide. This study aimed to characterize color forms of H. axyridis in Croatia and to analyze the variability of wing shape between populations and indicated forms. Geometric morphometric methods were used to analyze a total of 129 left and right wings in males and 126 left and right wings in females of H. axyridis collected from four different sites in Croatia. The results show a significant difference in wing shapes between the studied forms. Each form had its own specific morphotype that likely originated under the influence of genetic changes in the species. This study demonstrates that the use of geometric morphometric analysis is effective in studying the variability in H. axyridis populations. As this study is the first of its kind, for further clarity, it is necessary to conduct additional studies on a larger number of sites and an equal number of individuals of all forms.
RESUMO
Morphometrics has been used on Triatomines, a well-known phenotypically variable insect, to understand the process of morphological plasticity and infer the changes of this phenomenon. The following research was carried out in two regions of the inter-Andean valleys and two Chaco regions of Chuquisaca-Bolivia. Triatoma infestans adults were collected from the peridomestic (pens and chicken coops) along a geographic gradient in order to evaluate the morphological differentiation between groups and their pattern of sexual shape dimorphism. Geometric morphometric methods were applied on the wings and heads of T. infestans. The main findings include that we proved sexual dimorphism in heads and wings, determined the impact of environmental factors on size and shape and validated the impact of nutrition on head shape variation. These results show that geometric morphometric procedures can be used to provide key insight into the biological adaptation of T. infestans on different biotic (nutrition) and abiotic (environment) conditions, which could serve in understanding and evaluating infestation processes and further vector control programs.
RESUMO
Colorado potato beetle, CPB (Leptinotarsa decemlineata Say), is one of the most important pests of the potato globally. Larvae and adults can cause complete defoliation of potato plant leaves and can lead to a large yield loss. The insect has been successfully suppressed by insecticides; however, over time, has developed resistance to insecticides from various chemical groups, and its once successful control has diminished. The number of available active chemical control substances is decreasing with the process of testing, and registering new products on the market are time-consuming and expensive, with the possibility of resistance ever present. All of these concerns have led to the search for new methods to control CPB and efficient tools to assist with the detection of resistant variants and monitoring of resistant populations. Current strategies that may aid in slowing resistance include gene silencing by RNA interference (RNAi). RNAi, besides providing an efficient tool for gene functional studies, represents a safe, efficient, and eco-friendly strategy for CPB control. Genetically modified (GM) crops that produce the toxins of Bacillus thuringiensis (Bt) have many advantages over agro-technical, mechanical, biological, and chemical measures. However, pest resistance that may occur and public acceptance of GM modified food crops are the main problems associated with Bt crops. Recent developments in the speed, cost, and accuracy of next generation sequencing are revolutionizing the discovery of single nucleotide polymorphisms (SNPs) and field of population genomics. There is a need for effective resistance monitoring programs that are capable of the early detection of resistance and successful implementation of integrated resistance management (IRM). The main focus of this review is on new technologies for CPB control (RNAi) and tools (SNPs) for detection of resistant CPB populations.
RESUMO
The codling moth, Cydia pomonella L., is a serious insect pest in pome fruit production worldwide with a preference for apple. The pest is known for having developed resistance to several chemical groups of insecticides, making its control difficult. The control and management of the codling moth is often hindered by a lack of understanding about its biology and ecology, including aspects of its population genetics. This review summarizes the information about the origin and biology of the codling moth, describes the mechanisms of resistance in this pest, and provides an overview of current research of resistant pest populations and genetic research both in Europe and globally. The main focus of this review is on non-pesticide control measures and anti-resistance strategies which help to reduce the number of chemical pesticides used and their residues on food and the local environment. Regular monitoring for insecticide resistance is essential for proactive management to mitigate potential insecticide resistance. Here we describe techniques for the detection of resistant variants and possibilities for monitoring resistance populations. Also, we present our present work on developing new methods to maintain effective control using appropriate integrated resistance management (IRM) strategies for this economically important perennial pest.
RESUMO
The granary weevil, Sitophilus granarius Linnaeus 1875, is a primary pest of stored grains worldwide. Feeding damage and progeny production of S. granarius was estimated to identify the levels of resistance of the insect on different durum wheat cultivars. Insect attack on four different durum wheat cultivars was investigated over a period of 20 weeks. Durum wheats were artificially infected with 20 individuals of S. granarius. Every two weeks the sample weight, hectoliter weight, moisture and the number of live weevils, including their number of progenies, were recorded. Overall findings revealed different levels of resistance of different durum wheat cultivars to S. granarius infestation. The Primadur cultivar had the highest resistance, followed by the Marco Aurelio and Cesare cultivars followed finally by the Tito Flavio cultivar which was highly susceptible to S. granarius. For all cultivars, apart from Primadur, S. granarius metabolism increased humidity and temperature, leading to grain degradation and resulting in the potential complete loss of market value if under field conditions. Evidently, durum wheat characteristics affect the life cycle of S. granarius, primarily their progeny, and thus the damage they undertake to the wheat itself. These findings are important because they enable the strategic selection of wheat cultivars that can be stored for a longer time period, while more sensitive wheat cultivars can be selected for shorter storage time and thus faster delivery to market.
RESUMO
Overwintering success and weather conditions are the key factors determining the abundance and intensity of the attack of the first generation of European corn borers (ECB). The tolerance of maize to the 1st generation of ECB infestation is often considered to be connected with the maize maturity time. The aims of this research were (I) to examine the reactions of different maize FAO maturity groups in term of the damage caused by ECB larvae, (II) to analyze the influence of four climatic regions of Croatia regarding the damage caused by ECB larvae, and (III) to correlate observed damage between FAO maturity groups and weather conditions. First ECB generation damage has been studied in the two-year field trial with 32 different hybrids divided into four FAO maturity groups (eight per group) located at four locations with different climatic conditions. The results showed a lack of correlation between the FAO maturity group and the percent of damage. The percent of damage was positively correlated with the average air temperature in June (r = 0.59 for 2017 and r = 0.74 in 2018, p = 0.0001) within the range from 20 to 24.5 °C and was negatively correlated with the relative air humidity (r = -0.58 in 2017 and r = -0.77 in 2018, p = 0.0001) within the range of 50% to 80%. Our results provide a better understanding of the different factors that influence ECB damage. The obtained data could be used to predict the damage from the first generation of ECB under the weather conditions of different regions.
RESUMO
Insect infestations within stored product facilities are a major concern to livestock and human food industries. Insect infestations in storage systems can result in economic losses of up to 20%. Furthermore, the presence of insects and their waste and remains in grain and stored foods may pose a health risk to humans and livestock. At present, pests in commercial storage are managed by a combination of different methods ranging from cleaning and cooling to treatment of the stored material with contact insecticides or fumigation. The availability of pesticides for the treatment of grain and other stored products is decreasing owing, in some cases, to environmental and safety concerns among consumers and society, thus emphasizing the need for alternative eco-friendly pest control methods. One of the potential methods is the use of ozone. Although the mechanism of action of ozone on insects is not completely known, the insect's respiratory system is a likely the target of this gas. The main goal of this investigation was to determine the efficacy of ozone in the suppression of adult wheat weevils Sitophilus granarius. In the experiments conducted, different durations of ozone exposure were tested. In addition to ozone toxicity, the walking response and velocity of wheat weevils were investigated. The results showed the harmful effects of ozone on these insects. In addition to mortality, ozone also had negative effects on insect speed and mobility. The efficiency of the ozone treatment increased with increasing ozone exposure of insects. The ability of ozone to reduce the walking activity and velocity of treated insects is a positive feature in pest control in storage systems, thereby reducing the possibility of insects escaping from treated objects. The results of this investigation suggest that ozone has the potential to become a realistic choice for suppressing harmful insects in storage systems for humans and livestock, either alone or as a complement to other control methods.
RESUMO
The codling moth (CM) (Cydia pomonella L.) is the most important apple pest in Croatia and Europe. Owing to its economic importance, it is a highly controlled species and the intense selection pressure the species is under has likely caused it to change its phenotype in response. Intensive application of chemical-based insecticide treatments for the control of CM has led to resistance development. In this study, the forewing morphologies of 294 CM (11 populations) were investigated using geometric morphometric procedures based on the venation patterns of 18 landmarks. Finite element method (FEM) was also used to further investigate the dispersal capabilities of moths by modelling wing deformation versus wind speed. Three treatments were investigated and comprised populations from integrated and ecological (susceptible) orchards and laboratory-reared non-resistant populations. Forewing shape differences were found among the three treatment populations investigated. Across all three population treatments, the movement of landmarks 1, 7, 8, 9, and 12 drove the wing shape differences found. A reliable pattern of differences in forewing shape as related to control practice type was observed. FEM revealed that as wind speed (m/s-1) increased, so too did wing deformation (mm) for CM from each of the three treatments modelled. CM from the ecological orchards displayed the least deformation followed by integrated then laboratory-reared CM, which had the highest wing deformation at the highest wind speeds. This study presents an affordable and accessible technique that reliably demonstrates wing shape differences, and thus its use as a population biomarker to detect resistance should be further investigated.
RESUMO
Western corn rootworm (WCR) is the worst pest of maize in the United States, and since its spread through Europe, WCR is now recognized as the most serious pest affecting maize production. After the beetle's first detection in Serbia in 1992, neighboring countries such as Croatia have established a national monitoring program. For more than two decades WCR adult population abundance and variability was monitored. With traditional density monitoring, more recent genetic monitoring, and the newest morphometric monitoring of WCR populations, Croatia possesses a great deal of knowledge about the beetle's invasion process over time and space. Croatia's position in Europe is unique as no other European nation has demonstrated such a detailed and complete understanding of an invasive insect. The combined use of traditional monitoring (attractant cards), which can be effectively used to predict population abundance, and modern monitoring procedures, such as population genetics and geometric morphometrics, has been effectively used to estimate inter- and intra-population variation. The combined application of traditional and modern monitoring techniques will enable more efficient control and management of WCR across Europe. This review summarizes the research on WCR in Croatia from when it was first detected in 1992 until 2018. An outline of future research needs is provided.
RESUMO
BACKGROUND: Owing to the changing climate, narrow crop rotation, and changes in insecticide application practice, sugar beet weevil (SBW) (Bothynoderes punctiventris Germar) has become the most important economic pest in sugar beet. To develop alternative control methods, an area-wide (AW) control program using aggregation pheromones was implemented over 4 years on an area of 6 and 14.8 km2 in east Croatia. RESULTS: The mass trapping of SBW on the 'old' sugar beet fields reduced the population from 0.73% to 11.59%. Owing to the strong attack, mass trapping was not effective enough to avoid an insecticide application. However, it significantly reduced the number of insecticide applications, the amount of insecticide used, and the damage compared to the fields outside the mass trapping area. CONCLUSION: This is the first study to implement an AW program for SBW. It may not be possible to state from this study that trapping alone can reduce the SBW population below the economic threshold level. However, the data do suggest that trapping can play an important role in the reduction of insecticide applications and in creating an integrated pest management plan for dealing with SBW under similar circumstances. © 2017 Society of Chemical Industry.
Assuntos
Controle de Insetos , Feromônios , Gorgulhos , Animais , Beta vulgaris/crescimento & desenvolvimento , Croácia , Controle de Insetos/métodosRESUMO
BACKGROUND: The western corn rootworm (WCR) is economically the most important pest of maize in Croatia. To predict WCR adult population abundance and variability, traditional, genetic and morphometric monitoring of populations was conducted over time through each phase of the WCR invasion process in Croatia. RESULTS: Through traditional monitoring it was shown that WCR established their current population and reached economic densities after 14 years persisting in the study area. Regression-tree-based modelling showed that the best predictor of WCR adult abundance was the total amount of rainfall. Genetic monitoring indicated that genetic differentiation increased over time at the intrapopulation level, and morphometric monitoring indicated that wing morphotypes varied according to edaphic landscape changes. CONCLUSION: Traditional population metric surveys are important in WCR integrated pest management (IPM), as such surveys can be effectively used to predict population abundances. Novel-use monitoring techniques such as genetics and geometric morphometrics can be used to provide valuable information on variation within and among populations. The monitoring techniques presented herein provide sound data to assist in the understanding of both WCR ecology and population genetics and may provide more information than that currently available using traditional techniques (e.g. sticky traps), and as such these additional techniques should be written into IPM for WCR.
Assuntos
Besouros/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Doenças das Plantas/parasitologia , Zea mays/parasitologia , Animais , Besouros/genética , Feminino , Genética Populacional , Masculino , Modelos Teóricos , Controle de PragasRESUMO
This study describes the genetics of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte in southern Europe during the introduction (1996-2001) and establishment/spread (2002-2011) phases of its invasion. The Diabrotica microsatellite core-set was used to perform traditional population genetics analyses. Our results indicated that during the introduction phase genetic diversity and population genetic structure were lower overall as compared to the establishment/spread phase. Unusually high genetic differentiation was found between the Italy and southern Europe comparisons, including high differentiation between Italian populations separated by a short distance during the establishment/spread phase. STRUCTURE analysis revealed two genetic clusters during the introduction phase and two genetic clusters during the establishment/spread phase. However, bottlenecked populations were only detected during the invasion phase. A small but significant isolation by distance effect was noted in both phases. Serbia was the geographic source of WCR to Croatia and Hungary in the introduction phase, while the United States of America was the possible source of WCR to Italy in 2001. These introductory populations were the subsequent source of individuals sampled during the establishment/spread phase. Repeated introductions and admixture events in southern Europe may have resulted in genetically diverse WCR populations that have attained 83% of all known alleles worldwide.
Assuntos
Besouros/genética , Variação Genética , Repetições de Microssatélites , Zea mays/parasitologia , Animais , Besouros/fisiologia , Europa (Continente) , Evolução Molecular , Genes de Insetos , Genética Populacional , Espécies Introduzidas , Filogeografia , Dinâmica PopulacionalRESUMO
Studying the association between organismal morphology and environmental conditions has been very useful to test hypothesis regarding the influence of climate on shape. It has been long recognized that different environments produce dissimilar stress levels in insects, which can be reflected on the ability of an individual to overcome these pressures and spread further. Agriotes (Coleoptera: Elateridae) species infest agricultural fields in different parts of Croatia, inhabiting different climatic conditions. Previous biological studies have indicated that there is a relationship between some Agriotes biological parameters such as density and climatic conditions such as soil moisture and temperature. However, it is still unknown how these environmental properties influence the wireworm morphological structure. This is highly relevant because the head of this species is directly involved in the mobility in the soil, thus affecting the invasive capacity of this insect. Therefore the aim of this study was to assess the association between different climatic conditions and the morphological variation of Agriotes cephalic capsule. Advanced multivariate analysis and geometric morphometric tool were applied to study the covariation between shape and environmental variables. Partial Least Squares methods were used in order to analyse the association between the wireworm head shape and three different climatic conditions: soil type, temperature and rainfall. Our results showed that there is a high covariation between the wireworm head shape and the climatic conditions. It was suggested that the observed shape-environment association could be result of the high plasticity of this species in relation to its invasive capacity.