Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 141: 106859, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742494

RESUMO

A bio-assay guided fractionation strategy based on cholinesterase assay combined with 13C NMR-based dereplication was used to identify active metabolites from the bark of Mesua lepidota. Eight compounds were identified with the aid of the 13C NMR-based dereplication software, MixONat, i.e., sitosterol (1), stigmasterol (2), α-amyrin (3), friedelin (6), 3ß-friedelinol (7), betulinic acid (9), lepidotol A (10) and lepidotol B (11). Further bio-assay guided isolation of active compounds afforded one xanthone, pyranojacareubin (12) and six coumarins; lepidotol A (10), lepidotol B (11), lepidotol E (13), lepidotin A (14), and lepidotin B (15), including a new Mammea coumarin, lepidotin C (16). All the metabolites showed strong to moderate butyrylcholinesterase (BChE) inhibition. Lepidotin B (15) exhibited the most potent inhibition towards BChE with a mix-mode inhibition profile and a Ki value of 1.03 µM. Molecular docking and molecular dynamics simulations have revealed that lepidotin B (15) forms stable interactions with key residues within five critical regions of BChE. These regions encompass residues Asp70 and Tyr332, the acyl hydrophobic pocket marked by Leu286, the catalytic triad represented by Ser198 and His438, the oxyanion hole (OH) constituted by Gly116 and Gly117, and the choline binding site featuring Trp82. To gauge the binding strength of lepidotin B (15) and to pinpoint pivotal residues at the binding interface, free energy calculations were conducted using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) approach. This analysis not only predicted a favourable binding affinity for lepidotin B (15) but also facilitated the identification of significant residues crucial for the binding interaction.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Casca de Planta/química , Software , Acetilcolinesterase/metabolismo
2.
Biomolecules ; 10(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887413

RESUMO

Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from Garcinia bancana, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 1-4 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 1-4 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from Garcinia bancana with potential immunoregulatory properties.


Assuntos
Garcinia/química , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Compostos Policíclicos/farmacologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acilação , Benzofenonas/química , Benzofenonas/isolamento & purificação , Benzofenonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fator de Transcrição GATA2/metabolismo , Humanos , Interferon gama/metabolismo , Complexo Principal de Histocompatibilidade/efeitos dos fármacos , Complexo Principal de Histocompatibilidade/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Floroglucinol/química , Floroglucinol/isolamento & purificação , Compostos Policíclicos/química , Compostos Policíclicos/isolamento & purificação , Prenilação , Cultura Primária de Células , Fator de Transcrição STAT1/metabolismo , Terpenos/química , Terpenos/farmacologia , Transativadores/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/química
3.
Fitoterapia ; 131: 59-64, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30321650

RESUMO

Usually isolated from Garcinia (Clusiaceae) or Hypericum (Hypericaceae) species, some Polycyclic Polyprenylated AcylPhloroglucinols (PPAPs) have been recently reported as potential research tools for immunotherapy. Aiming at exploring the chemodiversity of PPAPs amongst Garcinia genus, a dereplication process suitable for such natural compounds has been developed. Although less sensitive than mass spectrometry, NMR spectroscopy is perfectly reproducible and allows stereoisomers distinction, justifying the development of 13C-NMR strategies. Dereplication requires the use of databases (DBs). To define if predicted DBs were accurate enough as dereplication tools, experimental and predicted δC of natural products usually isolated from Clusiaceae were compared. The ACD/Labs commercial software allowed to predict 73% of δC in a 1.25 ppm range around the experimental values. Consequently, with these parameters, the major PPAPs from a Garcinia bancana extract were successfully identified using a predicted DB.


Assuntos
Garcinia/química , Floroglucinol/isolamento & purificação , Extratos Vegetais/química , Bases de Dados de Compostos Químicos , Espectroscopia de Ressonância Magnética , Compostos Fitoquímicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA