Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Neuropsychopharmacol ; 18(6)2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25522392

RESUMO

BACKGROUND: Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. METHODS: The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. RESULTS: One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. CONCLUSIONS: As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia.


Assuntos
Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Dopamina/metabolismo , Fenciclidina , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Psicologia do Esquizofrênico , Medula Espinal/metabolismo , Sinapses/metabolismo , Fatores Etários , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Memória de Curto Prazo , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Fatores Sexuais , Medula Espinal/fisiopatologia , Medula Espinal/ultraestrutura , Sinapses/ultraestrutura , Fatores de Tempo
2.
Nat Med ; 13(1): 89-94, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17195839

RESUMO

Metabolic hormones, such as leptin, alter the input organization of hypothalamic circuits, resulting in increased pro-opiomelanocortin (POMC) tone, followed by decreased food intake and adiposity. The gonadal steroid estradiol can also reduce appetite and adiposity, and it influences synaptic plasticity. Here we report that estradiol (E2) triggers a robust increase in the number of excitatory inputs to POMC neurons in the arcuate nucleus of wild-type rats and mice. This rearrangement of synapses in the arcuate nucleus is leptin independent because it also occurred in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mice, and was paralleled by decreased food intake and body weight gain as well as increased energy expenditure. However, estrogen-induced decrease in body weight was dependent on Stat3 activation in the brain. These observations support the notion that synaptic plasticity of arcuate nucleus feeding circuits is an inherent element in body weight regulation and offer alternative approaches to reducing adiposity under conditions of failed leptin receptor signaling.


Assuntos
Estradiol/farmacologia , Melanocortinas/metabolismo , Neurônios/efeitos dos fármacos , Obesidade/fisiopatologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anorexia/induzido quimicamente , Anorexia/fisiopatologia , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/fisiologia , Núcleo Arqueado do Hipotálamo/ultraestrutura , Peso Corporal/efeitos dos fármacos , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Injeções Intraventriculares , Leptina/genética , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Microscopia Eletrônica , Neurônios/citologia , Neurônios/metabolismo , Obesidade/genética , Ovariectomia , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Mol Ther ; 21(12): 2160-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23913185

RESUMO

We combined viral vector delivery of human glial-derived neurotrophic factor (GDNF) with the grafting of dopamine (DA) precursor cells from fetal ventral mesencephalon (VM) to determine whether these strategies would improve the anti-Parkinson's effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, an animal model for Parkinson's disease (PD). Both strategies have been reported as individually beneficial in animal models of PD, leading to clinical studies. GDNF delivery has also been reported to augment VM tissue implants, but no combined studies have been done in monkeys. Monkeys were treated with MPTP and placed into four balanced treatment groups receiving only recombinant adeno-associated virus serotype 5 (rAAV5)/hu-GDNF, only fetal DA precursor cells, both together, or a buffered saline solution (control). The combination of fetal precursors with rAAV5/hu-GDNF showed significantly higher striatal DA concentrations compared with the other treatments, but did not lead to greater functional improvement in this study. For the first time under identical conditions in primates, we show that all three treatments lead to improvement compared with control animals.


Assuntos
Dependovirus/genética , Dopamina/metabolismo , Transplante de Tecido Fetal , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Intoxicação por MPTP/terapia , Mesencéfalo/transplante , Doença de Parkinson/terapia , Animais , Comportamento Animal , Transplante de Tecido Encefálico , Chlorocebus aethiops , Terapia Combinada , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Terapia Genética , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Vírus da Anemia Infecciosa Equina/genética , Intoxicação por MPTP/fisiopatologia , Intoxicação por MPTP/psicologia , Masculino , Mesencéfalo/citologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia
4.
Int J Neuropsychopharmacol ; 16(4): 905-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22947206

RESUMO

Parkinson's disease is usually characterized as a movement disorder; however, cognitive abilities that are dependent on the prefrontal cortex decline at an early stage of the disease in most patients. The changes that underlie cognitive deficits in Parkinson's disease are not well understood. We hypothesize that reduced dopamine signalling in the prefrontal cortex in Parkinson's disease is a harbinger of detrimental synaptic changes in pyramidal neurons in the prefrontal cortex, whose function is necessary for normal cognition. Our previous data showed that monkeys exposed to the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), but not exhibiting overt motor deficits (motor-asymptomatic), displayed cognitive deficits in prefrontal cortex-dependent tasks. The present results demonstrate that motor-asymptomatic MPTP-treated monkeys have a reduced dopamine concentration and a substantially lower number (50%) of asymmetric (excitatory) spine synapses in layer II/III, but not layer V, of the dorsolateral prefrontal cortex, compared to controls. In contrast, neither dopamine concentration nor asymmetric synapse number was altered in the entorhinal cortex of MPTP-treated monkeys. Together, these findings suggest that the number of asymmetric spine synapses on dendrites in the prefrontal cortex is dopamine-dependent and that the loss of synapses may be a morphological substrate of the cognitive deficits induced by a reduction in dopamine neurotransmission in this region.


Assuntos
Transtornos Cognitivos/metabolismo , Espinhas Dendríticas/metabolismo , Dopamina/metabolismo , Transtornos Parkinsonianos/metabolismo , Córtex Pré-Frontal/metabolismo , Sinapses/metabolismo , Animais , Chlorocebus aethiops , Transtornos Cognitivos/patologia , Espinhas Dendríticas/patologia , Masculino , Transtornos Parkinsonianos/patologia , Córtex Pré-Frontal/patologia , Sinapses/patologia
5.
Front Neuroendocrinol ; 31(4): 519-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20609373

RESUMO

The potential adverse effects of Bisphenol A (BPA), a synthetic xenoestrogen, have long been debated. Although standard toxicology tests have revealed no harmful effects, recent research highlighted what was missed so far: BPA-induced alterations in the nervous system. Since 2004, our laboratory has been investigating one of the central effects of BPA, which is interference with gonadal steroid-induced synaptogenesis and the resulting loss of spine synapses. We have shown in both rats and nonhuman primates that BPA completely negates the ∼ 70-100% increase in the number of hippocampal and prefrontal spine synapses induced by both estrogens and androgens. Synaptic loss of this magnitude may have significant consequences, potentially causing cognitive decline, depression, and schizophrenia, to mention those that our laboratory has shown to be associated with synaptic loss. Finally, we discuss why children may particularly be vulnerable to BPA, which represents future direction of research in our laboratory.


Assuntos
Estrogênios não Esteroides/toxicidade , Neurogênese/efeitos dos fármacos , Fenóis/toxicidade , Sinapses/efeitos dos fármacos , Androgênios/metabolismo , Androgênios/farmacologia , Animais , Compostos Benzidrílicos , Depressão/induzido quimicamente , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Fenóis/sangue , Fenóis/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Primatas , Ratos
6.
Int J Neuropsychopharmacol ; 14(10): 1411-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21733230

RESUMO

Schizophrenia patients, long-term abusers of phencyclidine (PCP), and monkeys treated with PCP all exhibit enduring cognitive deficits. Evidence indicates that loss of prefrontal cortex spine synapses results in cognitive dysfunction, suggesting the presence of synaptic pathology in the monkey PCP model; however, there is no direct evidence of such changes. In this study we use the monkey PCP model of schizophrenia to investigate at the ultrastructural level whether remodelling of dorsolateral prefrontal cortex (DLPFC) asymmetric spine synapses occurs following PCP. Subchronic PCP treatment resulted in a decrease in the number of asymmetric spine synapses, which was greater in layer II/III than layer V of DLPFC, compared to vehicle-treated controls. This decrease may contribute to PCP-induced cognitive dysfunction in the non-human primate model and perhaps in schizophrenia. Thus, the synapse loss in the PCP model provides a novel target for the development of potential treatments of cognitive dysfunction in this model and in schizophrenia.


Assuntos
Transtornos Cognitivos/patologia , Cognição , Espinhas Dendríticas/patologia , Fenciclidina , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Sinapses/patologia , Animais , Chlorocebus aethiops , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Masculino , Microscopia Eletrônica de Transmissão , Córtex Pré-Frontal/ultraestrutura , Esquizofrenia/induzido quimicamente , Psicologia do Esquizofrênico , Sinapses/ultraestrutura
7.
Mol Ther ; 18(3): 588-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20010918

RESUMO

Vectors derived from adeno-associated virus (AAV) are promising candidates for neural cell transduction in vivo because they are nonpathogenic and achieve long-term transduction in the central nervous system. AAV serotype 2 (AAV2) is the most widely used AAV vector in clinical trials based largely on its ability to transduce neural cells in the rodent and primate brain. Prior work in rodents suggests that other serotypes might be more efficient; however, a systematic evaluation of vector transduction efficiency has not yet been performed in the primate brain. In this study, AAV viral vectors of serotypes 1-6 with an enhanced green-fluorescent protein (GFP) reporter gene were generated at comparable titers, and injected in equal amounts into the brains of Chlorocebus sabaeus. Vector injections were placed in the substantia nigra (SN) and the caudate nucleus (CD). One month after injection, immunohistochemistry for GFP was performed and the total number of GFP+ cells was calculated using unbiased stereology. AAV5 was the most efficient vector, not only transducing significantly more cells than any other serotype, but also transducing both NeuN+ and glial-fibrillary-acidic protein positive (GFAP+) cells. These results suggest that AAV5 is a more effective vector than AAV2 at delivering potentially therapeutic transgenes to the nigrostriatal system of the primate brain.


Assuntos
Corpo Estriado/metabolismo , Dependovirus/metabolismo , Substância Negra/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Técnicas de Transferência de Genes , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica/métodos , Microscopia Confocal , Neurônios/metabolismo , Primatas
8.
Proc Natl Acad Sci U S A ; 105(37): 14187-91, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18768812

RESUMO

Exposure measurements from several countries indicate that humans are routinely exposed to low levels of bisphenol A (BPA), a synthetic xenoestrogen widely used in the production of polycarbonate plastics. There is considerable debate about whether this exposure represents an environmental risk, based on reports that BPA interferes with the development of many organs and that it may alter cognitive functions and mood. Consistent with these reports, we have previously demonstrated that BPA antagonizes spine synapse formation induced by estrogens and testosterone in limbic brain areas of gonadectomized female and male rats. An important limitation of these studies, however, is that they were based on rodent animal models, which may not be representative of the effects of human BPA exposure. To address this issue, we examined the influence of continuous BPA administration, at a daily dose equal to the current U.S. Environmental Protection Agency's reference safe daily limit, on estradiol-induced spine synapse formation in the hippocampus and prefrontal cortex of a nonhuman primate model. Our data indicate that even at this relatively low exposure level, BPA completely abolishes the synaptogenic response to estradiol. Because remodeling of spine synapses may play a critical role in cognition and mood, the ability of BPA to interfere with spine synapse formation has profound implications. This study is the first to demonstrate an adverse effect of BPA on the brain in a nonhuman primate model and further amplifies concerns about the widespread use of BPA in medical equipment, and in food preparation and storage.


Assuntos
Estradiol/sangue , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Fenóis/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Sinapses/metabolismo , Animais , Compostos Benzidrílicos , Chlorocebus aethiops , Feminino , Ovariectomia , Coluna Vertebral/efeitos dos fármacos , Sinapses/efeitos dos fármacos
9.
Neuroscience ; 459: 85-103, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524494

RESUMO

The synaptogenic hypothesis of major depressive disorder implies that preventing the onset of depressive-like behavior also prevents the loss of hippocampal spine synapses. By applying the psychoactive drugs, diazepam and fluoxetine, we investigated whether blocking the development of helpless behavior by promoting stress resilience in the rat learned helplessness paradigm is associated with a synaptoprotective action in the hippocampus. Adult ovariectomized and intact female Sprague-Dawley rats (n = 297) were treated with either diazepam, fluoxetine, or vehicle, exposed to inescapable footshocks or sham stress, and tested in an active escape task to assess helpless behavior. Escape-evoked corticosterone secretion, as well as remodeling of hippocampal spine synapses at a timepoint representing the onset of escape testing were also analyzed. In ovariectomized females, treatment with diazepam prior to stress exposure prevented helpless behavior, blocked the loss of hippocampal spine synapses, and muted the corticosterone surge evoked by escape testing. Although fluoxetine stimulated escape performance and hippocampal synaptogenesis under non-stressed conditions, almost all responses to fluoxetine were abolished following exposure to inescapable stress. Only a much higher dose of fluoxetine was capable of partly reproducing the strong protective actions of diazepam. Importantly, these protective actions were retained in the presence of ovarian hormones. Our findings indicate that stress resilience is associated with the preservation of spine synapses in the hippocampus, raising the possibility that, besides synaptogenesis, hippocampal synaptoprotection is also implicated in antidepressant therapy.


Assuntos
Transtorno Depressivo Maior , Desamparo Aprendido , Animais , Modelos Animais de Doenças , Feminino , Fluoxetina/farmacologia , Hipocampo , Ratos , Ratos Sprague-Dawley
10.
Vitam Horm ; 114: 167-210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32723543

RESUMO

The concept that estradiol may act as a local neuromodulator in the brain, rapidly affecting connectivity and synaptic function, has been firmly established by research over the last 30 years. De novo synthesis of estradiol within the brain as well as signaling mechanisms mediating responses to the hormone have been demonstrated, along with morphological evidence indicating rapid changes in synaptic input following increases in local estradiol levels. These rapid synaptic effects may play important roles in both physiological and pathophysiological responses to changes in circulating hormone levels, as well as in neurodegenerative disease. How local effects of estradiol on synaptic plasticity are integrated into changes in the overall activity of neural networks in the brain, however, remains a subject that is only incompletely understood.


Assuntos
Estrogênios/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Animais , Estrogênios/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos
11.
Endocrinology ; 149(3): 988-94, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18048497

RESUMO

Exposure measurement data from several developed countries indicate that human beings are widely exposed to low levels of the synthetic xenoestrogen, bisphenol A. We reported previously that bisphenol A, even at doses below the reference safe daily limit for human exposure, recommended by the U.S. Environmental Protection Agency, impairs the synaptogenic response to 17beta-estradiol in the hippocampus of ovariectomized rats. Recent experiments revealed that bisphenol A also interferes with androgen receptor-mediated transcriptional activities. Thus, to investigate whether bisphenol A impairs synaptogenesis in the medial prefrontal cortex (mPFC) and hippocampus of adult male rats, castrated and sham-operated animals were treated with different combinations of bisphenol A (300 microg/kg), testosterone propionate (1.5 mg/kg), and sesame oil vehicle. The brains were processed for electron microscopic stereology, and the number of asymmetric spine synapses in the mPFC and CA1 hippocampal area was estimated. In both regions analyzed, bisphenol A reduced the number of spine synapses in sham-operated, gonadally intact animals, which was accompanied by a compensatory increase in astroglia process density. In addition, bisphenol A prevented both the prefrontal and hippocampal synaptogenic response to testosterone supplementation in castrated males. These results demonstrate that bisphenol A interferes with the synaptogenic response to testosterone in the mPFC and hippocampus of adult male rats. Because the hippocampal synaptogenic action of androgens seems to be independent of androgen and estrogen receptors in males, the potential mechanisms that underlie these negative effects of bisphenol A remain the subject of further investigation.


Assuntos
Androgênios/farmacologia , Estrogênios não Esteroides/toxicidade , Hipotálamo/efeitos dos fármacos , Fenóis/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Testosterona/farmacologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Compostos Benzidrílicos , Cognição/efeitos dos fármacos , Cognição/fisiologia , Relação Dose-Resposta a Droga , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Orquiectomia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Propionato de Testosterona/farmacologia
12.
Hippocampus ; 18(4): 425-34, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18189312

RESUMO

Mossy cells, the major excitatory neurons of the hilus of the dentate gyrus constitutively express calretinin in several rodent species, including mouse and hamster, but not in rats. Several studies suggest that mossy cells of the monkey dentate gyrus are calretinin-positive, but others have reported mossy cells in monkeys to be devoid of detectable calretinin-like immunoreactivity. In the present study, the hilar region was investigated throughout the entire longitudinal extent of the hippocampal dentate gyrus in both Old World and New World monkeys, as well as in humans. In the examined four monkey species, mossy cells were found to be calretinin-positive at the uncal pole and at variable length within the main body of the dentate gyrus but not in the tail part. The associational pathway, formed by axons of mossy cells in the inner dentate molecular layer was calretinin-positive in more caudal sections, suggesting that mossy cell axon terminals may contain calretinin, whereas mossy cell somata may contain calretinin in a concentration too low to be detected by immunocytochemistry. In contrast, human mossy cells appear to be devoid of calretinin immunoreactivity in both their somata and their axon terminals. Taken together, mossy cells of nonhuman primates and humans exhibit different expression pattern for calretinin whereas they show similarities in neurochemical content, such as the cocaine and amphetamine-related transcript peptide.


Assuntos
Giro Denteado/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Neurônios/metabolismo , Primatas/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Idoso , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Mapeamento Encefálico , Calbindina 2 , Callithrix , Forma Celular/fisiologia , Chlorocebus aethiops , Dendritos/metabolismo , Dendritos/ultraestrutura , Giro Denteado/citologia , Feminino , Humanos , Imuno-Histoquímica , Macaca mulatta , Macaca nemestrina , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Primatas/anatomia & histologia , Especificidade da Espécie
13.
Endocrinology ; 148(5): 1963-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17317772

RESUMO

Recent studies suggest that, in female monkeys and rats, estrogens elicit dendritic spine synapse formation in the prefrontal cortex, an area that, similar to the hippocampus, plays a critical role in cognition. However, whether gonadal hormones induce synaptic remodeling in the male prefrontal cortex remains unknown. Here we report that gonadectomy reduced, whereas administration of 5alpha-dihydrotestosterone or estradiol-benzoate to castrated male rats increased, the number of medial prefrontal cortical (mPFC) spine synapses, with estradiol-benzoate being less effective than 5alpha-dihydrotestosterone. To investigate whether the androgen receptor contributes to the mediation of these changes, we compared the response of testicular feminization mutant (Tfm) male rats to that of wild-type animals. The number of mPFC spine synapses in gonadally intact Tfm rats and 5alpha-dihydrotestosterone-treated castrated Tfm males was considerably reduced compared to intact wild-type animals, whereas the synaptogenic effect of estradiol-benzoate was surprisingly enhanced in Tfm rats. These data are consistent with the hypothesis that remodeling of spine synapses in the prefrontal cortex may contribute to the cognitive effect of gonadal steroids. Our findings in Tfm animals indicate that androgen receptors may mediate a large part of the synaptogenic action of androgens in the mPFC of adult males. However, because this effect of 5alpha-dihydrotestosterone is not completely lost in Tfm rats, additional mechanisms may also be involved.


Assuntos
Androgênios/farmacologia , Anticoncepcionais/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Estradiol/análogos & derivados , Feminização/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Fatores Etários , Animais , Espinhas Dendríticas/ultraestrutura , Estradiol/farmacologia , Feminização/patologia , Masculino , Microscopia Eletrônica , Orquiectomia , Córtex Pré-Frontal/citologia , Ratos , Ratos Long-Evans , Ratos Mutantes , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura
14.
Prog Brain Res ; 163: 63-84, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17765712

RESUMO

The dentate gyrus is the first stage of the intrahippocampal, excitatory, trisynaptic loop, and a primary target of the majority of entorhinal afferents that terminate in a laminar fashion on granule cell dendrites and carry sensory information of multiple modalities about the external world. The electric activity of the trisynaptic pathway is controlled mainly by different types of local, GABAergic interneurons, and subcortical and commissural afferents. In this chapter we will outline the origin and postsynaptic targets in the dentate gyrus of chemically identified subcortical inputs. These systems are afferents originating from the medial septum/diagonal band of Broca GABAergic and cholinergic neurons, neurochemically distinct types of neurons located in the supramammillary area, serotonergic fibers from the median raphe, noradrenergic afferents from the pontine nucleus, locus ceruleus, dopamine axons originating in the ventral tegmental area, and the commissural projection system. Because of the physiological implications, these afferents are discussed in the context of the glutamatergic innervation of the dentate gyrus. One common feature of the extrinsic dentate afferent systems is that they originate from a relatively small number of neurons. However, the majority of these afferents are able to exert a powerful control over the electrical activity of the hippocampus. This strong influence is due to the fact that the majority of the extrinsic afferents terminate on a relatively small, but specific, populations of neurons that are able to control large areas of the hippocampal formation.


Assuntos
Vias Aferentes/anatomia & histologia , Giro Denteado/anatomia & histologia , Vias Aferentes/metabolismo , Vias Aferentes/ultraestrutura , Dopamina/metabolismo , Norepinefrina/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Prog Brain Res ; 163: 399-415, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17765731

RESUMO

In the late 1980s, the finding that the dentate gyrus contains more granule cells in the male than in the female of certain mouse strains provided the first indication that the dentate gyrus is a significant target for the effects of sex steroids during development. Gonadal hormones also play a crucial role in shaping the function and morphology of the adult brain. Besides reproduction-related processes, sex steroids participate in higher brain operations such as cognition and mood, in which the hippocampus is a critical mediator. Being part of the hippocampal formation, the dentate gyrus is naturally involved in these mechanisms and as such, this structure is also a critical target for the activational effects of sex steroids. These activational effects are the results of three major types of steroid-mediated actions. Sex steroids modulate the function of dentate neurons under normal conditions. In addition, recent research suggests that hormone-induced cellular plasticity may play a larger role than previously thought, particularly in the dentate gyrus. Specifically, the regulation of dentate gyrus neurogenesis and synaptic remodeling by sex steroids received increasing attention lately. Finally, the dentate gyrus is influenced by gonadal hormones in the context of cellular injury, and the work in this area demonstrates that gonadal hormones have neuroprotective potential. The expression of estrogen, progestin, and androgen receptors in the dentate gyrus suggests that sex steroids, which could be of gonadal origin and/or synthesized locally in the dentate gyrus, may act directly on dentate cells. In addition, gonadal hormones could also influence the dentate gyrus indirectly, by subcortical hormone-sensitive structures such as the cholinergic septohippocampal system. Importantly, these three sex steroid-related themes, functional effects in the normal dentate gyrus, mechanisms involving neurogenesis and synaptic remodeling, as well as neuroprotection, have substantial implications for understanding normal cognitive function, with clinical importance for epilepsy, Alzheimer's disease and mental disorders.


Assuntos
Giro Denteado/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Animais , Humanos , Caracteres Sexuais
16.
Brain Res Bull ; 71(6): 601-9, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17292803

RESUMO

The medial prefrontal cortex and the hippocampus serve well recognized roles in memory processing. The hippocampus projects densely to, and exerts strong excitatory actions on, the medial prefrontal cortex. Interestingly, the medial prefrontal cortex, in rats and other species, has no direct return projections to the hippocampus, and few projections to parahippocampal structures including the entorhinal cortex. It is well established that the nucleus reuniens of the midline thalamus is the major source of thalamic afferents to the hippocampus. Since the medial prefrontal cortex also distributes to nucleus reuniens, we examined medial prefrontal connections with populations of nucleus reuniens neurons projecting to hippocampus. We used a combined anterograde and retrograde tracing procedure at the light and electron microscopic levels. Specifically, we made Phaseolus vulgaris-leuccoagglutinin (PHA-L) injections into the medial prefrontal cortex and Fluorogold injections into the hippocampus (CA1/subiculum) and examined termination patterns of anterogradely PHA-L labeled fibers on retrogradely FG labeled cells of nucleus reuniens. At the light microscopic level, we showed that fibers from the medial prefrontal cortex form multiple putative synaptic contacts with dendrites of hippocampally projecting neurons throughout the extent of nucleus reuniens. At ultrastructural level, we showed that medial prefrontal cortical fibers form asymmetric contacts predominantly with dendritic shafts of hippocampally projecting reuniens cells. These findings indicate that nucleus reuniens represents a critical link between the medial prefrontal cortex and the hippocampus. We discuss the possibility that nucleus reuniens gates the flow of information between the medial prefrontal cortex and hippocampus dependent upon attentive/arousal states of the organism.


Assuntos
Hipocampo/ultraestrutura , Núcleos da Linha Média do Tálamo/ultraestrutura , Vias Neurais/ultraestrutura , Neurônios/ultraestrutura , Córtex Pré-Frontal/ultraestrutura , Animais , Mapeamento Encefálico , Dendritos/fisiologia , Dendritos/ultraestrutura , Hipocampo/fisiologia , Masculino , Memória de Curto Prazo/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Fito-Hemaglutininas , Córtex Pré-Frontal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Estilbamidinas , Membranas Sinápticas/fisiologia , Membranas Sinápticas/ultraestrutura
17.
Brain Res ; 1657: 361-367, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28063855

RESUMO

High dietary intake of plant estrogens (phytoestrogens) can affect brain structure and function. The effects of phytoestrogen intake within the range of normal animal and human dietary consumption, however, remain uncertain. The aim of the present study was to determine the effects of the isoflavonoids present in a standard low phytoestrogen laboratory rat chow on spine synapse density in the stratum radiatum of area CA1 of the hippocampus. Weanling rats (22days old) were fed either standard chow (Teklad 2018), a nutritionally comparable diet without soy (Teklad 2016) or a custom diet containing Teklad 2016 supplemented with the principal soy isoflavonoids, daidzein and genistein, for 40days. Rats were ovariectomized at 54days of age. Eight days later, spine synapse density on the apical dendrites of hippocampal pyramidal neurons in the stratum radiatum of area CA1 was measured by electron microscopic stereological analysis. Animals maintained on Teklad 2016 exhibited an approximately 60% lower CA1 spine synapse density than animals consuming Teklad 2018. Replacing genistein and daidzein in Teklad 2016 returned synapse density to levels indistinguishable from those in animals on Teklad 2018. These results indicate that the isoflavonoids in a standard laboratory rat diet exert significant effects on spine synapse density in the CA1 region of the hippocampus. Since changes in spine synapse density in this region of the hippocampus have been linked to cognitive performance and mood state, these data suggest that even relatively low daily consumption of soy phytoestrogens may be sufficient to influence hippocampal function.


Assuntos
Região CA1 Hipocampal/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Dieta , Fitoestrógenos/administração & dosagem , Proteínas de Soja/administração & dosagem , Sinapses/ultraestrutura , Ração Animal , Animais , Feminino , Genisteína/administração & dosagem , Isoflavonas/administração & dosagem , Microscopia Eletrônica , Ovariectomia , Células Piramidais/ultraestrutura , Ratos Sprague-Dawley
18.
Dev Cogn Neurosci ; 26: 52-61, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28521247

RESUMO

Potential long term effects on brain development are a concern when drugs are used to treat depression and anxiety in childhood. In this study, male juvenile rhesus monkeys (three-four years of age) were dosed with fluoxetine or vehicle (N=16/group) for two years. Histomorphometric examination of cortical dendritic spines conducted after euthanasia at one year postdosing (N=8/group) suggested a trend toward greater dendritic spine synapse density in prefrontal cortex of the fluoxetine-treated monkeys. During dosing, subjects were trained for automated cognitive testing, and evaluated with a test of sustained attention. After dosing was discontinued, sustained attention, recognition memory and cognitive flexibility were evaluated. Sustained attention was affected by fluoxetine, both during and after dosing, as indexed by omission errors. Response accuracy was not affected by fluoxetine in post-dosing recognition memory and cognitive flexibility tests, but formerly fluoxetine-treated monkeys compared to vehicle controls had more missed trial initiations and choices during testing. Drug treatment also interacted with genetic and environmental variables: MAOA genotype (high- and low transcription rate polymorphisms) and testing location (upper or lower tier of cages). Altered development of top-down cortical regulation of effortful attention may be relevant to this pattern of cognitive test performance after juvenile fluoxetine treatment.


Assuntos
Cognição/efeitos dos fármacos , Fluoxetina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Animais , Fluoxetina/administração & dosagem , Fluoxetina/farmacologia , Macaca mulatta , Masculino , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
19.
Neuroscience ; 343: 384-397, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28012870

RESUMO

Stress and withdrawal of female reproductive hormones are known risk factors of postpartum depression. Although both of these factors are capable of powerfully modulating neuronal plasticity, there is no direct electron microscopic evidence of hippocampal spine synapse remodeling in postpartum depression. To address this issue, hormonal conditions of pregnancy and postpartum period were simulated in ovariectomized adult female Sprague-Dawley rats (n=76). The number of hippocampal spine synapses and the depressive behavior of rats in an active escape task were investigated in untreated control, hormone-withdrawn 'postpartum', simulated proestrus, and hormone-treated 'postpartum' animals. After 'postpartum' withdrawal of gonadal steroids, inescapable stress caused a loss of hippocampal spine synapses, which was related to poor escape performance in hormone-withdrawn 'postpartum' females. These responses were equivalent with the changes observed in untreated controls that is an established animal model of major depression. Maintaining proestrus levels of ovarian hormones during 'postpartum' stress exposure did not affect synaptic and behavioral responses to inescapable stress in simulated proestrus animals. By contrast, maintaining pregnancy levels of estradiol and progesterone during 'postpartum' stress exposure completely prevented the stress-induced loss of hippocampal spine synapses, which was associated with improved escape performance in hormone-treated 'postpartum' females. This protective effect appears to be mediated by a muted stress response as measured by serum corticosterone concentrations. In line with our emerging 'synaptogenic hypothesis' of depression, the loss of hippocampal spine synapses may be a novel perspective both in the pathomechanism and in the clinical management of postpartum affective illness.


Assuntos
Depressão Pós-Parto/patologia , Transtorno Depressivo Maior/patologia , Hipocampo/patologia , Plasticidade Neuronal , Sinapses/patologia , Animais , Corticosterona/sangue , Depressão Pós-Parto/metabolismo , Transtorno Depressivo Maior/metabolismo , Modelos Animais de Doenças , Estradiol/administração & dosagem , Estradiol/metabolismo , Feminino , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Ovariectomia , Período Pós-Parto , Proestro/fisiologia , Progesterona/administração & dosagem , Progesterona/metabolismo , Ratos Sprague-Dawley , Sinapses/metabolismo
20.
Endocrinology ; 147(5): 2392-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16439462

RESUMO

The effects of estradiol benzoate (EB), dihydrotestosterone (DHT), or the antiandrogen hydroxyflutamide on CA1 pyramidal cell dendritic spine synapses were investigated in adult male rats. To elucidate the contribution of the androgen receptor to the hormone-induced increase in hippocampal CA1 synapses, wild-type males were compared with males expressing the Tfm mutation, which results in synthesis of defective androgen receptors. Orchidectomized rats were treated with EB (10 microg/rat.d), DHT (500 mug/rat.d), hydroxyflutamide (5 mg/rat.d), or the sesame oil vehicle sc daily for 2 d and examined using quantitative electron microscopic stereological techniques, 48 h after the second injection. In wild-type males, DHT and hydroxyflutamide both induced increases in the number of spine synapses in the CA1 stratum radiatum, whereas EB had no effect. DHT almost doubled the number of synaptic contacts observed, whereas hydroxyflutamide increased synapse density by approximately 50%, compared with the vehicle-injected controls. Surprisingly, in Tfm males, the effects of EB, DHT, and hydroxyflutamide were all indistinguishable from those observed in wild-type animals. These observations demonstrate that Tfm male rats resemble normal males in having no detectable hippocampal synaptic response to a dose of EB that is highly effective in females. Despite the reduction in androgen sensitivity as a result of the Tfm mutation, hippocampal synaptic responses to both DHT and a mixed androgen agonist/antagonist (hydroxyflutamide) remain intact in Tfm males. These data are consistent with previous results suggesting that androgen effects on hippocampal spine synapses may involve novel androgen response mechanisms.


Assuntos
Androgênios/metabolismo , Hipocampo/metabolismo , Mutação , Receptores Androgênicos/genética , Animais , Dendritos/metabolismo , Células Dendríticas/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Estradiol/análogos & derivados , Estradiol/farmacologia , Flutamida/análogos & derivados , Flutamida/farmacologia , Genótipo , Masculino , Microscopia Eletrônica , Modelos Estatísticos , Neurônios/metabolismo , Orquiectomia , Ratos , Receptores Androgênicos/fisiologia , Óleo de Gergelim/metabolismo , Sinapses/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA