Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 14(8): e1007278, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30153309

RESUMO

The GI tract is preferentially targeted during acute/early HIV-1 infection. Consequent damage to the gut plays a central role in HIV pathogenesis. The basis for preferential targeting of gut tissues is not well defined. Recombinant proteins and synthetic peptides derived from HIV and SIV gp120 bind directly to integrin α4ß7, a gut-homing receptor. Using both cell-surface expressed α4ß7 and a soluble α4ß7 heterodimer we demonstrate that its specific affinity for gp120 is similar to its affinity for MAdCAM (its natural ligand). The gp120 V2 domain preferentially engages extended forms of α4ß7 in a cation -sensitive manner and is inhibited by soluble MAdCAM. Thus, V2 mimics MAdCAM in the way that it binds to α4ß7, providing HIV a potential mechanism to discriminate between functionally distinct subsets of lymphocytes, including those with gut-homing potential. Furthermore, α4ß7 antagonists developed for the treatment of inflammatory bowel diseases, block V2 binding to α4ß7. A 15-amino acid V2 -derived peptide is sufficient to mediate binding to α4ß7. It includes the canonical LDV/I α4ß7 binding site, a cryptic epitope that lies 7-9 amino acids amino terminal to the LDV/I, and residues K169 and I181. These two residues were identified in a sieve analysis of the RV144 vaccine trial as sites of vaccine -mediated immune pressure. HIV and SIV V2 mAbs elicited by both vaccination and infection that recognize this peptide block V2-α4ß7 interactions. These mAbs recognize conformations absent from the ß- barrel presented in a stabilized HIV SOSIP gp120/41 trimer. The mimicry of MAdCAM-α4ß7 interactions by V2 may influence early events in HIV infection, particularly the rapid seeding of gut tissues, and supports the view that HIV replication in gut tissue is a central feature of HIV pathogenesis.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , Integrinas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/metabolismo , Animais , Anticorpos Monoclonais , Sítios de Ligação/imunologia , Linhagem Celular Tumoral , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Macaca , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/imunologia , Vacinas contra a SAIDS/química , Vacinas contra a SAIDS/imunologia , Vacinas contra a SAIDS/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodos
2.
Cytometry A ; 95(7): 737-745, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924603

RESUMO

A novel in vitro culture system using variable concentrations of biotin/streptavidin to label red blood cells (RBCs) that allows for the simultaneous comparison of growth rates in Plasmodium falciparum malaria parasite in four heterogeneous target RBC populations is described. Donor RBCs containing both P. falciparum-infected RBCs and non-infected RBCs at 0.5% parasitemia were first labeled with 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) succinimidyl ester (DDAO-SE) followed by co-culture with a mixture of equal numbers of four differentially biotin/streptavidin labeled RBC populations. After two to three schizogonic growth cycles, co-cultures were harvested and stained with streptavidin-phycoerythrin (SA-PE) followed by staining of parasite-infected RBCs with nucleic acid fluorochrome SYBR Green I. To demonstrate the application of this method, some target RBC populations that had sialic acid residues removed using neuraminidase treatment were mixed with RBC populations without enzymatic treatment and incubated with donor parasitized RBCs strain W2 (sialic acid-dependent) or 3D7 (sialic acid-independent). Significant less susceptibility to malaria parasite invasion was obtained with enzyme-treated RBC populations when compared with non-treated RBCs in blood samples from the same individual when using malaria parasite strain W2, whereas no difference in percent parasitemias was noted following infection with malaria parasite strain 3D7. This novel malaria culture method is cheap and provides increased sensitivity for direct comparison of parasite growth over time of any of the four RBC populations under identical conditions and eliminates the experimental bias due to contaminated donor RBCs. The application of biotin-labeled RBCs will therefore provide a better understanding of invasion phenotype-specific host-parasite interactions and the extent of complex malaria invasion mechanism. © 2019 International Society for Advancement of Cytometry.


Assuntos
Eritrócitos/parasitologia , Citometria de Fluxo/métodos , Plasmodium falciparum/crescimento & desenvolvimento , Biotinilação , Eritrócitos/citologia , Corantes Fluorescentes/química , Interações Hospedeiro-Parasita , Humanos , Coloração e Rotulagem
3.
Immunology ; 153(4): 455-465, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29105052

RESUMO

Dengue virus (DENV) infection is considered one of the most important mosquito-borne diseases. It causes a spectrum of illness that could be due to qualitative and/or quantitative difference(s) of the natural killer (NK) cell responses during acute DENV infection. This view prompted us to perform a detailed phenotypic comparative characterization of NK cell subsets from DENV-infected patients with dengue fever (DF), patients with dengue haemorrhagic fever (DHF) and healthy controls. The activation/differentiation molecules, CD69 and CD57 and a variety of tissue homing molecules were analysed on the CD56hi CD16- and CD56lo CD16+ NK cells. Although there was no increase in the frequency of the total NK cells during DENV infection compared with the healthy individuals, there was a significant increase in the frequency of the CD56hi CD16- subset and the frequency of CD69 expression by both NK cell subsets during the febrile phase of infection. We also found an increase in the frequencies of cells expressing CD69 and CD57 in the CD56lo CD16+ subset compared with those in the CD56hi CD16- subset. Moreover, although the CD56lo CD16+ subset contained a high frequency of cells expressing skin-homing markers, the CD56hi CD16- subset contained a high frequency of cells expressing bone marrow and lymph node trafficking markers. Interestingly, no differences of these NK cell subsets were noted in samples from patients with DF versus those with DHF. These findings suggest that activation and differentiation and the patterns of tissue homing molecules of the two major NK cell subsets are different and that these might play a critical role in the immune response against acute DENV infection.


Assuntos
Antígenos CD/imunologia , Dengue/imunologia , Células Matadoras Naturais/imunologia , Doença Aguda , Adolescente , Anticorpos Monoclonais/imunologia , Biomarcadores , Criança , Pré-Escolar , Dengue/sangue , Vírus da Dengue/imunologia , Feminino , Humanos , Masculino , Adulto Jovem
4.
Sci Rep ; 14(1): 1291, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221530

RESUMO

Human Vγ9Vδ2 T lymphocytes are regarded as promising effector cells for cancer immunotherapy since they have the ability to eliminate several tumor cells through non-peptide antigen recognition. However, the cytotoxic function and the mechanism of Vγ9Vδ2 T cells leading to specific killing of cholangiocarcinoma cells are yet to be confirmed. In this study, we established a protocol for ex vivo expansion of Vγ9Vδ2 T cells from healthy donors' peripheral blood mononuclear cells by culture with zoledronate and addition of IL-2, and IL-15 or IL-18 or neither. Testing the cytotoxic capacity of cultured Vγ9Vδ2 T cells against cholangiocarcinoma cell lines showed higher reactivity than against control cells. Surface expression of CD107 was detected on the Vγ9Vδ2 T cells, suggesting that these cells limit in vitro growth of cholangiocarcinoma cells via degranulation of the perforin and granzyme pathway. Analysis of molecular signaling was used to demonstrate expression of pro- and anti-survival genes and a panel of cytokine genes in Vγ9Vδ2 T cells. We found that in the presence of either IL-15 or IL-18, levels of caspase 3 were significantly reduced. Also, IL-15 and IL-18 stimulated cells contained cytotoxicity against cholangiocarcinoma cells, suggesting that stimulated Vγ9Vδ2 T cells may provide a feasible therapy for cholangiocarcinoma.


Assuntos
Antineoplásicos , Colangiocarcinoma , Humanos , Interleucina-15/farmacologia , Interleucina-18 , Leucócitos Mononucleares/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T , Ativação Linfocitária
5.
Pathogens ; 11(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35745486

RESUMO

Extracellular vesicles (EVs) released from pathogenic protozoans play crucial roles in host-parasite communication and disease pathogenesis. Naegleria fowleri is a free-living protozoan causing primary amoebic meningoencephalitis, a fatal disease in the central nervous system. This study aims to explore the roles of N. fowleri-derived EVs (Nf-EVs) in host-pathogen interactions using the THP-1 cell line as a model. The Nf-EVs were isolated from the N. fowleri trophozoite culture supernatant using sequential centrifugation and characterized by nanoparticle tracking analysis and transmission electron microscopy. The functional roles of Nf-EVs in the apoptosis and immune response induction of THP-1 monocytes and macrophages were examined by flow cytometry, quantitative PCR, and ELISA. Results showed that Nf-EVs displayed vesicles with bilayer membrane structure approximately 130-170 nm in diameter. The Nf-EVs can be internalized by macrophages and induce macrophage responses by induction of the expression of costimulatory molecules CD80, CD86, HLA-DR, and CD169 and the production of cytokine IL-8. However, Nf-EVs did not affect the apoptosis of macrophages. These findings illustrate the potential role of Nf-EVs in mediating the host immune cell activation and disease pathogenesis.

6.
Pathogens ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832614

RESUMO

Monocytes, one of the main target cells for dengue virus (DENV) infection, contribute to the resolution of viremia and to pathogenesis. We performed a longitudinal study by a detailed phenotypic comparison of classical (CD14++CD16-, non-classical (CD14+CD16++) and intermediate (CD14++CD16+) monocyte subsets in blood samples from dengue fever (DF) to the severe dengue hemorrhagic fever (DHF) and healthy individuals. Various costimulatory molecules of CD40, CD80, CD86 and inducible costimulatory ligand (ICOSL) expressed on these three monocyte subsets were also analyzed. DENV-infected patients showed an increase in the frequency of intermediate monocytes and a decrease in the classical monocytes when compared to healthy individuals. Although these differences did not correlate with disease severity, changes during the early phase of infection gradually returned to normal in the defervescence phase. Moreover, decreased frequency of classical monocytes was associated with a significant up-regulation of co-stimulatory molecules CD40, CD86 and ICOSL. Kinetics of these co-stimulatory molecule-expressing classical monocytes showed different patterns throughout the sampling times of acute DENV infection. Different distribution of monocyte subsets and their co-stimulatory molecules in the peripheral blood during acute infection might exacerbate immune responses like cytokine storms and ADE, and future studies on intracellular molecular pathways utilized by these monocyte linages are warranted.

7.
PLoS One ; 13(7): e0200564, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001408

RESUMO

Dengue virus (DENV) is the most prevalent arthropod-borne viral disease in humans. DENV causes a spectrum of illness ranging from mild to potentially severe complications. Dendritic cells (DCs) play a critical role in initiating and regulating highly effective antiviral immune response that include linking innate and adaptive immune responses. This study was conducted to comparatively characterize in detail the relative proportion, phenotypic changes, and maturation profile of subsets of both myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in children with dengue fever (DF), dengue hemorrhagic fever (DHF) and for purposes of control healthy individuals. The mDCs (Lin-CD11c+CD123lo), the pDCs (Lin-CD11c-CD123+) and the double negative (DN) subset (Lin-/HLA-DR+/CD11c-CD123-) were analyzed by polychromatic flow cytometry. The data were first analyzed on blood samples collected from DENV-infected patients at various times post-infection. Results showed that the relative proportion of mDCs were significantly decreased which was associated with an increase in disease severity in samples from DENV-infected patients. While there was no significant difference in the relative proportion of pDCs between healthy and DENV-infected patients, there was a marked increase in the DN subset. Analysis of the kinetics of changes of pDCs showed that there was an increase but only during the early febrile phase. Additionally, samples from patients during acute disease showed marked decreases in the relative proportion of CD141+ and CD16+ mDC subsets that were the major mDC subsets in healthy individuals. In addition, there was a significant decrease in the level of CD33-expressing mDCs in DENV patients. While the pDCs showed an up-regulation of maturation profile during acute DENV infection, the mDCs showed an alteration of maturation status. This study suggests that different relative proportion and phenotypic changes as well as alteration of maturation profile of DC subsets may play a critical role in the dengue pathogenesis and disease outcome.


Assuntos
Antígenos CD/imunologia , Células Dendríticas/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Células Mieloides/imunologia , Adolescente , Criança , Pré-Escolar , Células Dendríticas/patologia , Dengue/patologia , Feminino , Humanos , Masculino , Células Mieloides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA