Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 12: e17101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500526

RESUMO

Background: Structural variant (SV) calling from DNA sequencing data has been challenging due to several factors, including the ambiguity of short-read alignments, multiple complex SVs in the same genomic region, and the lack of "truth" datasets for benchmarking. Additionally, caller choice, parameter settings, and alignment method are known to affect SV calling. However, the impact of FASTQ read order on SV calling has not been explored for long-read data. Results: Here, we used PacBio DNA sequencing data from 15 Caenorhabditis elegans strains and four Arabidopsis thaliana ecotypes to evaluate the sensitivity of different SV callers on FASTQ read order. Comparisons of variant call format files generated from the original and permutated FASTQ files demonstrated that the order of input data affected the SVs predicted by each caller. In particular, pbsv was highly sensitive to the order of the input data, especially at the highest depths where over 70% of the SV calls generated from pairs of differently ordered FASTQ files were in disagreement. These demonstrate that read order sensitivity is a complex, multifactorial process, as the differences observed both within and between species varied considerably according to the specific combination of aligner, SV caller, and sequencing depth. In addition to the SV callers being sensitive to the input data order, the SAMtools alignment sorting algorithm was identified as a source of variability following read order randomization. Conclusion: The results of this study highlight the sensitivity of SV calling on the order of reads encoded in FASTQ files, which has not been recognized in long-read approaches. These findings have implications for the replication of SV studies and the development of consistent SV calling protocols. Our study suggests that researchers should pay attention to the input order sensitivity of read alignment sorting methods when analyzing long-read sequencing data for SV calling, as mitigating a source of variability could facilitate future replication work. These results also raise important questions surrounding the relationship between SV caller read order sensitivity and tool performance. Therefore, tool developers should also consider input order sensitivity as a potential source of variability during the development and benchmarking of new and improved methods for SV calling.


Assuntos
Algoritmos , Genômica , Genômica/métodos , Análise de Sequência de DNA/métodos , Genoma , DNA
2.
BMC Dermatol ; 12: 1, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22405101

RESUMO

BACKGROUND: The role that the peritumoral stroma plays in the growth of tumours is currently poorly understood. In this manuscript the morphometric characteristics of basal cell carcinoma subtypes and their associated peritumoral stromas are presented. METHODS: Ninety eight digitized basal cell carcinoma histology slides were categorized as infiltrative, nodular, or superficial subtypes, and were analysed using a combination of manual and computer-assisted approaches. The morphometric characteristics of the tumour nests and their associated peritumoral stroma were quantified, and the presence of a marked immune reaction or elastosis was noted. RESULTS: The tumour to stroma ratio was different among each tumour subtype. Elastosis was identified in a greater proportion of the infiltrative tumours. CONCLUSIONS: Quantitative differences exist between the peritumoral stroma of basal cell carcinoma subtypes. Future work exploring the relation between these morphometric differences and biochemical variations in peritumoral stroma may further our understanding of the biology of carcinoma development. TRIAL REGISTRATION: Not applicable.


Assuntos
Carcinoma Basocelular/patologia , Neoplasias Cutâneas/patologia , Células Estromais/patologia , Humanos
3.
PLoS One ; 17(12): e0278424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584177

RESUMO

The accurate characterization of structural variation is crucial for our understanding of how large chromosomal alterations affect phenotypic differences and contribute to genome evolution. Whole-genome sequencing is a popular approach for identifying structural variants, but the accuracy of popular tools remains unclear due to the limitations of existing benchmarks. Moreover, the performance of these tools for predicting variants in non-human genomes is less certain, as most tools were developed and benchmarked using data from the human genome. To evaluate the use of long-read data for the validation of short-read structural variant calls, the agreement between predictions from a short-read ensemble learning method and long-read tools were compared using real and simulated data from Caenorhabditis elegans. The results obtained from simulated data indicate that the best performing tool is contingent on the type and size of the variant, as well as the sequencing depth of coverage. These results also highlight the need for reference datasets generated from real data that can be used as 'ground truth' in benchmarks.


Assuntos
Caenorhabditis elegans , Genoma Humano , Animais , Humanos , Caenorhabditis elegans/genética , Sequenciamento Completo do Genoma , Sequenciamento de Nucleotídeos em Larga Escala
4.
BMC Res Notes ; 5: 35, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22251818

RESUMO

BACKGROUND: The use of digital imaging and algorithm-assisted identification of regions of interest is revolutionizing the practice of anatomic pathology. Currently automated methods for extracting the tumour regions in basal cell carcinomas are lacking. In this manuscript a colour-deconvolution based tumour extraction algorithm is presented. FINDINGS: Haematoxylin and eosin stained basal cell carcinoma histology slides were digitized and analyzed using the open source image analysis program ImageJ. The pixels belonging to tumours were identified by the algorithm, and the performance of the algorithm was evaluated by comparing the pixels identified as malignant with a manually determined dataset.The algorithm achieved superior results with the nodular tumour subtype. Pre-processing using colour deconvolution resulted in a slight decrease in sensitivity, but a significant increase in specificity. The overall sensitivity and specificity of the algorithm was 91.0% and 86.4% respectively, resulting in a positive predictive value of 63.3% and a negative predictive value of 94.2% CONCLUSIONS: The proposed image analysis algorithm demonstrates the feasibility of automatically extracting tumour regions from digitized basal cell carcinoma histology slides. The proposed algorithm may be adaptable to other stain combinations and tumour types.

5.
J Pathol Inform ; 2: 52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22276243

RESUMO

Increased type I error resulting from multiple statistical comparisons remains a common problem in the scientific literature. This may result in the reporting and promulgation of spurious findings. One approach to this problem is to correct groups of P-values for "family-wide significance" using a Bonferroni correction or the less conservative Bonferroni-Holm correction or to correct for the "false discovery rate" with a Benjamini-Hochberg correction. Although several solutions are available for performing this correction through commercially available software there are no widely available easy to use open source programs to perform these calculations. In this paper we present an open source program written in Python 3.2 that performs calculations for standard Bonferroni, Bonferroni-Holm and Benjamini-Hochberg corrections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA