Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 31(12): 2947-2972, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31628167

RESUMO

Flowers are essential but vulnerable plant organs, exposed to pollinators and florivores; however, flower chemical defenses are rarely investigated. We show here that two clustered terpene synthase and cytochrome P450 encoding genes (TPS11 and CYP706A3) on chromosome 5 of Arabidopsis (Arabidopsis thaliana) are tightly coexpressed in floral tissues, upon anthesis and during floral bud development. TPS11 was previously reported to generate a blend of sesquiterpenes. By heterologous coexpression of TPS11 and CYP706A3 in yeast (Saccharomyces cerevisiae) and Nicotiana benthamiana, we demonstrate that CYP706A3 is active on TPS11 products and also further oxidizes its own primary oxidation products. Analysis of headspace and soluble metabolites in cyp706a3 and 35S:CYP706A3 mutants indicate that CYP706A3-mediated metabolism largely suppresses sesquiterpene and most monoterpene emissions from opening flowers, and generates terpene oxides that are retained in floral tissues. In flower buds, the combined expression of TPS11 and CYP706A3 also suppresses volatile emissions and generates soluble sesquiterpene oxides. Florivory assays with the Brassicaceae specialist Plutella xylostella demonstrate that insect larvae avoid feeding on buds expressing CYP706A3 and accumulating terpene oxides. Composition of the floral microbiome appears also to be modulated by CYP706A3 expression. TPS11 and CYP706A3 simultaneously evolved within Brassicaceae and form the most versatile functional gene cluster described in higher plants so far.plantcell;31/12/2947/FX1F1fx1.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/metabolismo , Terpenos/antagonistas & inibidores , Alquil e Aril Transferases/genética , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Flores/genética , Flores/microbiologia , Expressão Gênica , Larva , Microbiota , Modelos Moleculares , Simulação de Acoplamento Molecular , Monoterpenos/metabolismo , Mariposas , Família Multigênica , Filogenia , Sesquiterpenos/metabolismo , Terpenos/química , Terpenos/metabolismo , Nicotiana/metabolismo , Leveduras/metabolismo
2.
Plant J ; 99(5): 924-936, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038800

RESUMO

Multiple adaptations were necessary when plants conquered the land. Among them were soluble phenylpropanoids related to plant protection and lignin necessary for upright growth and long-distance water transport. Cytochrome P450 monooxygenase 98 (CYP98) catalyzes a rate-limiting step in phenylpropanoid biosynthesis. Phylogenetic reconstructions suggest that a single copy of CYP98 founded each major land plant lineage (bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms), and was maintained as a single copy in all lineages but the angiosperms. In angiosperms, a series of independent gene duplications and losses occurred. Biochemical assays in four angiosperm species tested showed that 4-coumaroyl-shikimate, a known intermediate in lignin biosynthesis, was the preferred substrate of one member in each species, while independent duplicates in Populus trichocarpa and Amborella trichopoda each showed broad substrate ranges, accepting numerous 4-coumaroyl-esters and -amines, and were thus capable of producing a wide range of hydroxycinnamoyl conjugates. The gymnosperm CYP98 from Pinus taeda showed a broad substrate range, but preferred 4-coumaroyl-shikimate as its best substrate. In contrast, CYP98s from the lycophyte Selaginella moellendorffii and the fern Pteris vittata converted 4-coumaroyl-shikimate poorly in vitro, but were able to use alternative substrates, in particular 4-coumaroyl-anthranilate. Thus, caffeoyl-shikimate appears unlikely to be an intermediate in monolignol biosynthesis in non-seed vascular plants, including ferns. The best substrate for CYP98A34 from the moss Physcomitrella patens was also 4-coumaroyl-anthranilate, while 4-coumaroyl-shikimate was converted to lower extents. Despite having in vitro activity with 4-coumaroyl-shikimate, CYP98A34 was unable to complement the Arabidopsis thaliana cyp98a3 loss-of-function phenotype, suggesting distinct properties also in vivo.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Lignina/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Briófitas/metabolismo , Bryopsida/metabolismo , Sistema Enzimático do Citocromo P-450/classificação , Magnoliopsida/metabolismo , Filogenia , Proteínas de Plantas/classificação , Populus , Pteris/metabolismo , Selaginellaceae/metabolismo , Ácido Chiquímico
3.
Plant Cell ; 27(10): 2972-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26475865

RESUMO

The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests.


Assuntos
Arabidopsis/enzimologia , Cicloexanóis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/enzimologia , Inseticidas/metabolismo , Monoterpenos/metabolismo , Compostos de Tritil/metabolismo , Monoterpenos Acíclicos , Álcoois/química , Álcoois/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cicloexanóis/química , Sistema Enzimático do Citocromo P-450/genética , Flores/genética , Flores/imunologia , Genes Reporter , Insetos/fisiologia , Inseticidas/química , Monoterpenos/química , Oxirredução , Estereoisomerismo , Compostos de Tritil/química
4.
J Biol Chem ; 287(16): 13477-86, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22393051

RESUMO

Infection of insects by the entomopathogenic fungus Beauveria bassiana proceeds via attachment and penetration of the host cuticle. The outermost epicuticular layer or waxy layer of the insect represents a structure rich in lipids including abundant amounts of hydrocarbons and fatty acids. A member of a novel cytochrome P450 subfamily, CYP52X1, implicated in fatty acid assimilation by B. bassiana was characterized. B. bassiana targeted gene knockouts lacking Bbcyp52x1 displayed reduced virulence when topically applied to Galleria mellonella, but no reduction in virulence was noted when the insect cuticle was bypassed using an intrahemoceol injection assay. No significant growth defects were noted in the mutant as compared with the wild-type parent on any lipids substrates tested including alkanes and fatty acids. Insect epicuticle germination assays, however, showed reduced germination of ΔBbcyp52x1 conidia on grasshopper wings as compared with the wild-type parent. Complementation of the gene-knock with the full-length gene restored virulence and insect epicuticle germination to wild-type levels. Heterologous expression of CYP52X1 in yeast was used to characterize the substrate specificity of the enzyme. CYP52X1 displayed the highest activity against midrange fatty acids (C12:0 and C14:0) and epoxy stearic acid, 4-8-fold lower activity against C16:0, C18:1, and C18:2, and little to no activity against C9:0 and C18:0. Analyses of the products of the C12:0 and C18:1 reactions confirmed NADPH-dependent regioselective addition of a terminal hydroxyl to the substrates (ω-hydroxylase). These data implicate CYP52X1 as contributing to the penetration of the host cuticle via facilitating the assimilation of insect epicuticle lipids.


Assuntos
Beauveria/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Gafanhotos/microbiologia , Oxigenases de Função Mista/metabolismo , Animais , Beauveria/genética , Beauveria/patogenicidade , Sistema Enzimático do Citocromo P-450/genética , Oxigenases de Função Mista/genética , Mutagênese , Filogenia , Especificidade por Substrato/fisiologia , Virulência
5.
Metab Eng ; 18: 25-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23518241

RESUMO

Natural nootkatone is a high value ingredient for the flavor and fragrance industry because of its grapefruit flavor/odor, low sensorial threshold and low availability. Valencene conversion into nootkatol and nootkatone is known to be catalyzed by cytochrome P450 enzymes from both prokaryotic and eukaryotic organisms, but so far development of a viable bioconversion process using either native microorganisms or recombinant enzymes was not successful. Using an in silico gene-mining approach, we selected 4 potential candidate P450 enzymes from higher plants and identified two of them that selectively converted (+)-valencene into ß-nootkatol with high efficiency when tested using recombinant yeast microsomes in vitro. Recombinant yeast expressing CYP71D51v2 from tobacco and a P450 reductase from arabidopsis was used for optimization of a bioconversion process. Bioconversion assays led to production of ß-nootkatol and nootkatone, but with low yields that decreased upon increase of the substrate concentration. The reasons for this low bioconversion efficiency were further investigated and several factors potentially hampering industry-compatible valencene bioconversion were identified. One is the toxicity of the products for yeast at concentrations exceeding 100 mg L⁻¹. The second is the accumulation of ß-nootkatol in yeast endomembranes. The third is the inhibition of the CYP71D51v2 hydroxylation reaction by the products. Furthermore, we observed that the formation of nootkatone from ß-nootkatol is not P450-dependent but catalyzed by a yeast component. Based on these data, we propose new strategies for implementation of a viable P450-based bioconversion process.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/enzimologia , Sesquiterpenos/metabolismo , Biotransformação/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/genética , Sesquiterpenos Policíclicos , Saccharomyces cerevisiae/genética , Sesquiterpenos/farmacologia , Nicotiana/genética
6.
Rice (N Y) ; 12(1): 45, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31240493

RESUMO

BACKGROUND: Jasmonate (JA) signaling and functions have been established in rice development and response to a range of biotic or abiotic stress conditions. However, information on the molecular actors and mechanisms underlying turnover of the bioactive jasmonoyl-isoleucine (JA-Ile) is very limited in this plant species. RESULTS: Here we explored two gene families in rice in which some members were described previously in Arabidopsis to encode enzymes metabolizing JA-Ile hormone, namely cytochrome P450 of the CYP94 subfamily (CYP94, 20 members) and amidohydrolases (AH, 9 members). The CYP94D subclade, of unknown function, was most represented in the rice genome with about 10 genes. We used phylogeny and gene expression analysis to narrow the study to candidate members that could mediate JA-Ile catabolism upon leaf wounding used as mimic of insect chewing or seedling exposure to salt, two stresses triggering jasmonate metabolism and signaling. Both treatments induced specific transcriptional changes, along with accumulation of JA-Ile and a complex array of oxidized jasmonate catabolites, with some of these responses being abolished in the JASMONATE RESISTANT 1 (jar1) mutant. However, upon response to salt, a lower dependence on JAR1 was evidenced. Dynamics of CYP94B5, CYP94C2, CYP94C4 and AH7 transcripts matched best the accumulation of JA-Ile catabolites. To gain direct insight into JA-Ile metabolizing activities, recombinant expression of some selected genes was undertaken in yeast and bacteria. CYP94B5 was demonstrated to catalyze C12-hydroxylation of JA-Ile, whereas similarly to its Arabidopsis bi-functional homolog IAR3, AH8 performed cleavage of JA-Ile and auxin-alanine conjugates. CONCLUSIONS: Our data shed light on two rice gene families encoding enzymes related to hormone homeostasis. Expression data along with JA profiling and functional analysis identifies likely actors of JA-Ile catabolism in rice seedlings. This knowledge will now enable to better understand the metabolic fate of JA-Ile and engineer optimized JA signaling under stress conditions.

7.
J Biol Chem ; 283(10): 6067-75, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18167342

RESUMO

Taxa-4(5),11(12)-diene is the first committed precursor of functionalized taxanes such as paclitaxel, a successful anticancer drug. Biosynthesis of taxanes in yew involves several oxidations, a number of which have been shown to be catalyzed by cytochrome P-450 oxygenases. Hydroxylation of the C-5alpha of taxa-4(5),11(12)-diene is believed to be the first of these oxidations, and a gene encoding a taxa-4(5),11(12)-diene 5alpha-hydroxylase (CYP725A4) was recently described (Jennewein, S., Long, R. M., Williams, R. M., and Croteau, R. (2004) Chem. Biol. 11, 379-387). In an attempt to produce the early components of the paclitaxel pathway by a metabolic engineering approach, cDNAs encoding taxa-4(5),11(12)-diene synthase and CYP725A4 were introduced in Nicotiana sylvestris for specific expression in trichome cells. Their co-expression did not lead to the production of the expected 5alpha-hydroxytaxa-4(20),11(12)-diene. Instead, taxa-4(5),11(12)-diene was quantitatively converted to a novel taxane that was purified and characterized. Its structure was determined by NMR analysis and found to be that of 5(12)-oxa-3(11)-cyclotaxane (OCT) in which the eight-carbon B-ring from taxa-4(5),11(12)-diene is divided into two fused five-carbon rings. In addition, OCT contains an ether bridge linking C-5 and C-12 from opposite sides of the molecule. OCT was also the sole major product obtained after incubation of taxa-4(5),11(12)-diene with NADPH and microsomes prepared from recombinant yeast expressing CYP725A4. The rearrangement of the taxa-4(5),11(12)-diene ring system is thus mediated by CYP725A4 only and does not rely on additional enzymes or factors present in the plant. The complex structure of OCT led us to propose a reaction mechanism involving a sequence of events so far unknown in P-450 catalysis.


Assuntos
Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Isomerases/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Taxoides/metabolismo , Antineoplásicos Fitogênicos/biossíntese , Catálise , Sistema Enzimático do Citocromo P-450/genética , Hidroxilação , Isomerases/genética , Microssomos/enzimologia , Oxirredução , Paclitaxel/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Saccharomyces cerevisiae/genética , Nicotiana/genética
8.
Proc Natl Acad Sci U S A ; 103(49): 18848-53, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17124172

RESUMO

CYP51 sterol demethylases are the only cytochrome P450 enzymes with a conserved function across the animal, fungal, and plant kingdoms (in the synthesis of essential sterols). These highly conserved enzymes, which are important targets for cholesterol-lowering drugs, antifungal agents, and herbicides, are regarded as the most ancient member cytochrome P450 family. Here we present a report of a CYP51 enzyme that has acquired a different function. We show that the plant enzyme AsCYP51H10 is dispensable for synthesis of essential sterols and has been recruited for the production of antimicrobial compounds (avenacins) that confer disease resistance in oats. The AsCyp51H10 gene is synonymous with Sad2, a gene that we previously had defined by mutation as being required for avenacin synthesis. In earlier work, we showed that Sad1, the gene encoding the first committed enzyme in the avenacin pathway (beta-amyrin synthase), had arisen by duplication and divergence of a cycloartenol synthase-like gene. Together these data indicate an intimate evolutionary connection between the sterol and avenacin pathways. Sad1 and Sad2 lie within 70 kb of each other and are expressed specifically in the epidermal cells of the root tip, the site of accumulation of avenacins. These findings raise intriguing questions about the recruitment, coevolution, and regulation of the components of this specialized defense-related metabolic pathway.


Assuntos
Avena/enzimologia , Sequência Conservada , Sistema Enzimático do Citocromo P-450/fisiologia , Doenças das Plantas/genética , Esteróis/metabolismo , Sequência de Aminoácidos , Animais , Avena/genética , Dados de Sequência Molecular , Família Multigênica , Doenças das Plantas/microbiologia , Saponinas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA