Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069259

RESUMO

Liver fibrosis is reversible when treated in its early stages and when liver inflammatory factors are inhibited. Limited studies have investigated the therapeutic effects of corylin, a flavonoid extracted from Psoralea corylifolia L. (Fabaceae), on liver fibrosis. Therefore, we evaluated the anti-inflammatory activity of corylin and investigated its efficacy and mechanism of action in ameliorating liver fibrosis. Corylin significantly inhibited inflammatory responses by inhibiting the activation of mitogen-activated protein kinase signaling pathways and the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha in human THP-1 and mouse RAW264.7 macrophages. Furthermore, corylin inhibited the expression of growth arrest-specific gene 6 in human hepatic stellate cells (HSCs) and the activation of the downstream phosphoinositide 3-kinase/protein kinase B pathway. This inhibited the activation of HSCs and the expression of extracellular matrix proteins, including α-smooth muscle actin and type I collagen. Additionally, corylin induced caspase 9 and caspase 3 activation, which promoted apoptosis in HSCs. Moreover, in vivo experiments confirmed the regulatory effects of corylin on these proteins, and corylin alleviated the symptoms of carbon tetrachloride-induced liver fibrosis in mice. These findings revealed that corylin has anti-inflammatory activity and inhibits HSC activation; thus, it presents as a potential adjuvant in the treatment of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Fosfatidilinositol 3-Quinases , Animais , Humanos , Camundongos , Anti-Inflamatórios/efeitos adversos , Tetracloreto de Carbono , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
2.
Phytother Res ; 36(5): 2116-2126, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35229911

RESUMO

The extracts from Psoralea corylifolia Linn. (P. corylifolia) seeds have been shown to display antitumor activity. To date, the prospects of this plant and its active compounds in the treatment of non-small-cell lung cancer (NSCLC) have not been thoroughly studied. In this study, we identified a novel psorachromene compound that displays selective cytotoxic effects on all NSCLC cells tested, including NSCLC cells harboring epidermal growth factor receptor (EGFR) activation mutants (H1975L858R/T790M and H1975-MS35L858R/T790M/C797S ). Psorachromene induces G1 arrest in NSCLC cells harboring wild-type EGFR but induces apoptosis in NSCLC cells harboring activating EGFR mutations. Psorachromene inhibits activated EGFR signaling and kinase activity and suppresses tumor growth of implanted H1975-MS35L858R/T790M/C797S cells in nude mice. Molecular docking analysis revealed that psorachromene could form stronger bonds with mutant EGFR than wild-type EGFR, which might account for the greater cytotoxic effects observed in NSCLC cells harboring activating EGFR mutations (H1975 and H1975-MS35) than wild-type EGFR (A549). In conclusion, it is suggested that psorachromene is an attractive agent to be further explored for its use in the treatment of NSCLC patients harboring EGFR L858R/T790M/C797S.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163593

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer with a poor prognosis. The incidence and mortality rate of TNBC are frequently found in younger women. Due to the absence of a good therapeutic strategy, effective remedies for inhibiting TNBC have been developed for improving the cure rate. Epithelial-to-mesenchymal transition (EMT) is a critical mechanism to regulate cancer cell motility and invasion. Furthermore, ectopic expression of EMT molecules correlates with the metastasis and poor prognosis of TNBC. Targeting EMT might be a strategy for the therapy and prevention of TNBC. Propolin G, an active c-prenylflavanone in Taiwanese propolis, has been shown to possess anti-cancer activity in many cancers. However, the anti-metastasis activity of propolin G on TNBC is still unclear. The present study showed that the migration and invasion activities of TNBC cells was suppressed by propolin G. Down-regulated expression of Snail and vimentin and up-regulated expression of E-cadherin were dose- and time-dependently observed in propolin G-treated MDA-MB-231 cells. Propolin G inhibited Snail and vimentin expressions via the signaling pathways associated with post-translational modification. The activation of glycogen synthase kinase 3ß (GSK-3ß) by propolin G resulted in increasing GSK-3ß interaction with Snail. Consequently, the nuclear localization and stability of Snail was disrupted resulting in promoting the degradation. Propolin G-inhibited Snail expression and the activities of migration and invasion were reversed by GSK-3ß inhibitor pretreatment. Meanwhile, the outcomes also revealed that histone deacetylase 6 (HDAC6) activity was dose-dependently suppressed by propolin G. Correspondently, the amounts of acetyl-α-tubulin, a down-stream substrate of HDAC6, were increased. Dissociation of HDAC6/Hsp90 with vimentin leading to increased vimentin acetylation and degradation was perceived in the cells with the addition of propolin G. Moreover, up-regulated expression of acetyl-α-tubulin by propolin G was attenuated by HDAC6 overexpression. On the contrary, down-regulated expression of vimentin, cell migration and invasion by propolin G were overturned by HDAC6 overexpression. Conclusively, restraint cell migration and invasion of TNBC by propolin G were activated by the expression of GSK-3ß-suppressed Snail and the interruption of HDAC6-mediated vimentin protein stability. Aiming at EMT, propolin G might be a potential candidate for TNBC therapy.


Assuntos
Cumarínicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavanonas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Vimentina/metabolismo , Linhagem Celular Tumoral , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Desacetilase 6 de Histona/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Vimentina/genética
4.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269806

RESUMO

Inflammatory bowel disease (IBD) involves chronic inflammation, loss of epithelial integrity, and gastrointestinal microbiota dysbiosis, resulting in the development of a colon cancer known as colitis-associated colorectal cancer (CAC). In this study, we evaluated the effects of corylin in a mouse model of dextran sodium sulfate (DSS)-induced colitis. The results showed corylin could improved the survival rate and colon length, maintained body weight, and ameliorated the inflammatory response in the colon. Then, we further identified the possible antitumor effects after 30-day treatment of corylin on an azoxymethane (AOM)/DSS-induced CAC mouse model. Biomarkers associated with inflammation, the colon tissue barrier, macrophage polarization (CD11c, CCR7, CD163, and CD206), and microbiota dysbiosis were monitored in the AOM/DSS group versus corylin groups. Corylin downregulated pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1ß, and IL-6) mRNA expression and inflammatory signaling-associated markers (TLR4, MyD88, AP-1, CD11b, and F4/80). In addition, a colon barrier experiment revealed that epithelial cell proliferation of the mucus layer (Lgr5, Cyclin D1, and Olfm4) was downregulated and tight junction proteins (claudin-1 and ZO-1) were upregulated. Furthermore, the Firmicutes/Bacteroidetes ratio changed with corylin intervention, and the microbial diversity and community richness of the AOM/DSS mice were improved by corylin. The comparative analysis of gut microbiota revealed that Bacteroidetes, Patescibacteria, Candidatus Saccharimonas, Erysipelatoclostridium, and Enterorhabdus were significantly increased but Firmicutes, Turicibacter, Romboutsia, and Blautia decreased after corylin treatment. Altogether, corylin administration showed cancer-ameliorating effects by reducing the risk of colitis-associated colon cancer via regulation of inflammation, carcinogenesis, and compositional change of gut microbiota. Therefore, corylin could be a novel, potential health-protective, natural agent against CAC.


Assuntos
Neoplasias Associadas a Colite , Colite , Microbioma Gastrointestinal , Animais , Anti-Inflamatórios/farmacologia , Azoximetano/efeitos adversos , Colite/induzido quimicamente , Colite/complicações , Colite/tratamento farmacológico , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/patologia , Flavonoides , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/metabolismo , Regulação para Cima
5.
Molecules ; 27(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335252

RESUMO

Euphormin-A (1) and euphormin-B (2), two new pyranocoumarin derivatives, and forty known compounds (3-42) were isolated from Euphorbia formosana Hayata (Euphorbiaceae). The chemical structures of all compounds were established based on spectroscopic analyses. Several isolates were evaluated for their anti-inflammatory activity. Compounds 1, 2, 10, 18, 25, and 33 significantly inhibited against superoxide anion generation and elastase release by human neutrophils in response to formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB). Furthermore, compounds 25 and 33 displayed the most potent effects with IC50 values of 0.68 ± 0.18 and 1.39 ± 0.12 µM, respectively, against superoxide anion generation when compared with the positive control (2.01 ± 0.06 µM).


Assuntos
Euphorbia , Piranocumarinas , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Humanos , Elastase Pancreática , Superóxidos
6.
Pharmacol Res ; 164: 105291, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253817

RESUMO

Brown adipose tissue (BAT) activation or beige adipocytes in white adipocytes (WAT) (browning) is a novel strategy against obesity. Corylin, a flavonoid compound extract from Psoralea corylifolia L., has been shown to exert anti-inflammatory, anticancer, and anti-atherosclerotic effects and ameliorate hyperlipidemia and insulin resistance. However, the therapeutic effect of corylin on obesity remains unknown. The objective of this study was to evaluate the effect of corylin on browning or obesity. Here, we report that corylin induced browning by elevating the expression levels of beige- or browning-specific marker genes, including cited1, hoxc9, pgc1α, prdm16, and ucp1, in 3T3-L1 adipocytes, WAT and BAT. Moreover, corylin also strikingly reduced body weight and fat accumulation and increased insulin sensitivity, mitochondrial biogenesis, and ß-oxidation in HFD- and DIO-treated mice. The browning and lipolysis effects of corylin were abolished by sirtuin 1 (SIRT1) inhibitor (EX527) and ß3-adrenergic receptor (ß3-AR) antagonist (L-748,337) treatment. The possible molecular mechanism of corylin on the browning and lipolysis of adipocytes is through SIRT1- or ß3-AR-dependent pathways. The study suggested that corylin exerts anti-obesity effects through the browning of white adipocytes, activating of BAT and promoting of lipid metabolism. Therefore, corylin may be a helpful therapeutic candidate for treating obesity.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Flavonoides/uso terapêutico , Obesidade/tratamento farmacológico , Receptores Adrenérgicos beta 3/metabolismo , Sirtuína 1/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Flavonoides/farmacologia , Resistência à Insulina , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
7.
J Formos Med Assoc ; 120(9): 1695-1705, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33342707

RESUMO

BACKGROUND/PURPOSE: Palbociclib is an FDA-approved cyclin-dependent kinase (CDK) 4/6 inhibitor that has been clinically proven to be effective in breast cancer. However, its use in oral cancer is not well researched. In this study, we investigated the inhibitory activity of palbociclib against oral squamous cell carcinoma (OSCC) cells and explored the mechanism of inhibition. METHODS: The effects of palbociclib on the cytotoxicity of OSCC cells were determined by MTT and colony formation assays. ß-Galactosidase staining and cell-cycle analysis were used to determine palbociclib-induced cellular senescence and apoptosis of OSCC cells. Wound healing and transwell assays were performed to assess the effects of palbociclib treatment on migration and invasion ability of OSCC cells. Whole transcriptome sequencing was conducted to show the relationship between DNA damage repair of OSCC cells and palbociclib treatment. Palbociclib-induced DNA damage and repair capacity of OSCC cells were confirmed by comet assay and immunofluorescence confocal microscopy. Western blotting was used to verify the palbociclib-mediated changes in the CDK/pRB/c-Myc/CDC25A pathway. Finally, in vitro findings were tested in a mouse xenograft model. RESULTS: Our results showed that palbociclib can significantly inhibit the growth, migration, and invasive ability of OSCC cells and can accelerate cellular senescence and apoptosis. We found that palbociclib induced DNA damage and p21 expression through the p53-independent pathway, thereby downregulating c-Myc and CDC25A expression to inhibit cell cycle progression. In addition, palbociclib downregulated RAD51 expression to inhibit DNA damage repair ability of OSCC cell. CONCLUSION: Palbociclib was found to have anti-oral squamous cell carcinoma activity and to simultaneously induce DNA damage and inhibit its repair, and to accelerated cellular senescence and apoptosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Dano ao DNA , Reparo do DNA , Camundongos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Piperazinas , Piridinas , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
8.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575923

RESUMO

Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Flavonoides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas , Regulação da Expressão Gênica , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Leveduras/efeitos dos fármacos , Leveduras/genética , Leveduras/metabolismo
9.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500594

RESUMO

Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient's survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study's aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Flavonoides/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B1 , Inibidor de Quinase Dependente de Ciclina p21/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
10.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093124

RESUMO

Epidermal growth factor receptor (EGFR) is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC), which is the major type of lung cancer. The EGFR tyrosine kinase inhibitors (TKIs) are the approved treatment for patients harboring activating mutations in the EGFR kinase. However, most of the patients treated with EGFR-TKIs developed resistance. Therefore, the development of compounds exhibiting unique antitumor activities might help to improve the management of NSCLC patients. The total flavonoids from Daphne genkwa Sieb. et Zucc. have been shown to contain antitumor activity. Here, we have isolated a novel flavonoid hydroxygenkwanin (HGK) that displays selective cytotoxic effects on all of the NSCLC cells tested. In this study, we employed NSCLC cells harboring EGFR mutations and xenograft mouse model to examine the antitumor activity of HGK on TKI-resistant NSCLC cells. The results showed that HGK suppressed cancer cell viability both in vitro and in vivo. Whole-transcriptome analysis suggests that EGFR is a potential upstream regulator that is involved in the gene expression changes affected by HGK. In support of this analysis, we presented evidence that HGK reduced the level of EGFR and inhibited several EGFR-downstream signalings. These results suggest that the antitumor activity of HGK against TKI-resistant NSCLC cells acts by enhancing the degradation of EGFR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Flavonoides/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Proteólise/efeitos dos fármacos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Sobrevivência Celular/efeitos dos fármacos , Daphne/química , Receptores ErbB/metabolismo , Flavonoides/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
11.
Int J Obes (Lond) ; 43(12): 2407-2421, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30944419

RESUMO

BACKGROUND/OBJECTIVES: Low-grade chronic inflammation in visceral adipose tissue and the intestines are important drivers of obesity associated insulin resistance. Bioactive compounds derived from plants are an important source of potential novel therapies for the treatment of chronic diseases. In search for new immune based treatments of obesity associated insulin resistance, we screened for tissue relevant anti-inflammatory properties in 20 plant-based extracts. METHODS: We screened 20 plant-based extracts to assess for preferential production of IL-10 compared to TNFα, specifically targetting metabolic tissues, including the visceral adipose tissue. We assessed the therapeutic potential of the strongest anti-inflammatory compound, indigo, in the C57BL/6J diet-induced obesity mouse model with supplementation for up to 16 weeks by measuring changes in body weight, glucose and insulin tolerance, and gut barrier function. We also utilized flow cytometry, quantitative PCR, enzyme-linked immunosorbent assay (ELISA), and histology to measure changes to immune cells populations and cytokine profiles in the intestine, visceral adipose tissue (VAT), and liver. 16SrRNA sequencing was performed to examine gut microbial differences induced by indigo supplementation. RESULTS: We identifed indigo, an aryl hydrocarbon receptor (AhR) ligand agonist, as a potent inducer of IL-10 and IL-22, which protects against high-fat diet (HFD)-induced insulin resistance and fatty liver disease in the diet-induced obesity model. Therapeutic actions were mechanistically linked to decreased inflammatory immune cell tone in the intestine, VAT and liver. Specifically, indigo increased Lactobacillus bacteria and elicited IL-22 production in the gut, which improved intestinal barrier permeability and reduced endotoxemia. These changes were associated with increased IL-10 production by immune cells residing in liver and VAT. CONCLUSIONS: Indigo is a naturally occurring AhR ligand with anti-inflammatory properties that effectively protects against HFD-induced glucose dysregulation. Compounds derived from indigo or those with similar properties could represent novel therapies for diseases associated with obesity-related metabolic tissue inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Índigo Carmim/farmacologia , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Animais , Citocinas/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química
12.
Foodborne Pathog Dis ; 16(8): 573-580, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30994374

RESUMO

Psoralea corylifolia seeds contain many bioactive compounds commonly used in traditional Chinese medicine. In this study, the antibacterial activity and possible mechanism of P. corylifolia seed ethanol extract (PCEE) against foodborne pathogens were investigated. Both methicillin-resistant Staphylococcus aureus (MRSA) and Listeria monocytogenes had similar minimum inhibitory concentrations and minimum bactericidal concentrations of PCEE at 50 and 100 µg/mL, respectively. Furthermore, elevated OD260, protein concentration, and electric conductivity indicated irreversible damage to the cytoplasmic membranes of PCEE-treated cells. Indeed, the treated cells displayed disrupted membranes, incomplete and deformed shapes, and rupture as visualized by scanning electron microscopy. Multidrug-resistance efflux pump gene expression was also analyzed by quantitative reverse transcription PCR. Although the mdrL, mdrT, and lde genes of L. monocytogenes and the mepA gene of MRSA were upregulated, there was no significant difference that indicated an attempt by the efflux pumps to discharge PCEE. MRSA norA expression and abcA expression were significantly downregulated (p < 0.05). A possible mechanism for PCEE may be to cause an energy depletion, either by inhibiting adenosine triphosphate binding or by disturbing the proton gradient, resulting in membrane damage.


Assuntos
Anti-Infecciosos/farmacologia , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Psoralea , Humanos , Testes de Sensibilidade Microbiana , Sementes
13.
Int J Mol Sci ; 19(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29382035

RESUMO

Corylin is a flavonoid extracted from the nuts of Psoralea corylifolia L. (Fabaceae), which is a widely used anti-inflammatory and anticancer herb in China. Recent studies revealed antioxidant, anti-inflammatory, and bone differentiation-promoting effects of corylin. However, there are no studies examining the anticancer activity of corylin. In this study, we used cells and animal models to examine the antitumor effects of corylin on hepatocellular carcinoma (HCC) and then studied its downstream regulatory mechanisms. The results showed that corylin significantly inhibited the proliferation, migration, and invasiveness of HCC cells and suppressed epithelial-mesenchymal transition. We found that the anti-HCC mechanism of corylin's action lies in the upregulation of tumor suppressor long noncoding RNA growth arrest-specific transcript 5 (GAS5) and the activation of its downstream anticancer pathways. In animal experiments, we also found that corylin can significantly inhibit tumor growth without significant physiological toxicity. The above results suggest that corylin has anti-HCC effects and good potential as a clinical treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavonoides/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Transição Epitelial-Mesenquimal/genética , Flavonoides/uso terapêutico , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Nucleolar Pequeno/genética
14.
Int J Mol Sci ; 18(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215575

RESUMO

Effective DNA repair enables cancer cells to survive DNA damage induced by chemotherapeutic or radiotherapeutic treatments. Therefore, inhibiting DNA repair pathways is a promising therapeutic strategy for increasing the efficacy of such treatments. In this study, we found that dihydrocoumarin (DHC), a flavoring agent, causes deficiencies in double-stand break (DSB) repair and prolonged DNA damage checkpoint recovery in yeast. Following DNA damage, Rad52 recombinase was revealed to be inhibited by DHC, which results in deficiencies in DSB repair and prolonged DNA damage checkpoint recovery. The deletion of RPD3, a class I histone deacetylase (HDAC), was found to mimic DHC-induced suppression of Rad52 expression, suggesting that the HDAC inhibitor activity of DHC is critical to DSB repair and DNA damage sensitivity. Overall, our findings delineate the regulatory mechanisms of DHC in DSB repair and suggest that it might potentially be used as an inhibitor of the DNA repair pathway in human cells.


Assuntos
Cumarínicos/toxicidade , Dano ao DNA , Aromatizantes/toxicidade , Inibidores de Histona Desacetilases/toxicidade , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Cumarínicos/farmacologia , Aromatizantes/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Reparo de DNA por Recombinação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Environ Toxicol ; 31(11): 1663-1673, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26179408

RESUMO

Uncontrolled cell proliferation is a common feature of human cancer. Some of herbal extract or plant-derived medicine had been shown as an important source of effective anticancer agents. We previously reported that an n-BuOH-soluble fraction of Kalanchoe tubiflora has antiproliferative activity by inducing mitotic catastrophe. In this study, we showed that the H2 O-soluble fraction of Kalanchoe tubiflora (KT-W) caused cell cycle arrest, and senescence-inducing activities in A549 cells. We used 2 dimensional PAGE to analyze the protein expression levels after KT-W treatment, and identified that the energy metabolism-related proteins and senescence-related proteins were disturbed. In vivo experiments showed that the tumor growths in A549-xenografted nude mice were effectively inhibited by KT-W. Our findings implied that KT-W is a putative antitumor agent by inducing cell cycle arrest and senescence. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1663-1673, 2016.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Kalanchoe , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Fitoterapia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428686

RESUMO

The abnormal proliferation, migration, and inflammation of vascular smooth muscle cells (VSMCs) play crucial roles in the development of neointimal hyperplasia and restenosis. Exposure to inflammatory cytokines such as platelet-derived growth factor (PDGF)-BB and tumour necrosis factor-alpha (TNF-α) induces the transformation of contractile VSMCs into abnormal synthetic VSMCs. Isoxanthohumol (IXN) has significant anti-inflammatory, antiproliferative, and antimigratory effects. This study aimed to explore the therapeutic impact and regulatory mechanism of IXN in treating neointimal hyperplasia. The present findings indicate that IXN effectively hinders the abnormal proliferation, migration, and inflammation of VSMCs triggered by PDGF or TNF-α. This inhibition is primarily achieved through the modulation of the apelin/AKT or AKT pathway, respectively. In an in vivo model, IXN effectively reduced neointimal hyperplasia in denuded femoral arteries. These results suggest that IXN holds promise as a potential and innovative therapeutic candidate for the treatment of restenosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Xantonas , Humanos , Hiperplasia/tratamento farmacológico , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apelina , Movimento Celular , Becaplermina/farmacologia , Neointima/tratamento farmacológico , Neointima/metabolismo , Inflamação
17.
Biomed Pharmacother ; 176: 116864, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865847

RESUMO

BACKGROUND: DNA repair allows the survival of cancer cells. Therefore, the development of DNA repair inhibitors is a critical need for sensitizing cancers to chemoradiation. Sae2CtIP has specific functions in initiating DNA end resection, as well as coordinating cell cycle checkpoints, and it also greatly interacts with the DDR at different levels. RESULTS: In this study, we demonstrated that corylin, a potential sensitizer, causes deficiencies in DNA repair and DNA damage checkpoints in yeast cells. More specifically, corylin increases DNA damage sensitivity through the Sae2-dependent pathway and impairs the activation of Mec1-Ddc2, Rad53-p and γ-H2A. In breast cancer cells, corylin increases apoptosis and reduces proliferation following Dox treatment by inhibiting CtIP. Xenograft assays showed that treatment with corylin combined with Dox significantly reduced tumor growth in vivo. CONCLUSIONS: Our findings herein delineate the mechanisms of action of corylin in regulating DNA repair and indicate that corylin has potential long-term clinical utility as a DDR inhibitor.


Assuntos
Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Humanos , Animais , Reparo do DNA/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Camundongos Nus , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Doxorrubicina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Proteomics ; 13(15): 2297-311, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23696413

RESUMO

Hepatic ischemia-reperfusion (IR) injury is a common clinical problem and ROS may be a contributing factor on IR injury. The current study evaluates the potential protective effect of saffron ethanol extract (SEE) in a rat model upon hepatic IR injury. Caspases 3 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling (TUNEL) results showed increased cell death in the IR samples; reversely, minor apoptosis was detected in the SEE/IR group. Pretreatment with SEE significantly restored the content of antioxidant enzymes (SOD1 and catalase) and remarkably inhibited the intracellular ROS concentration in terms of reducing p47phox translocation. Proteome tools revealed that 20 proteins were significantly modulated in protein intensity between IR and SEE/IR groups. Particularly, SEE administration could attenuate the carbonylation level of several chaperone proteins. Network analysis suggested that saffron extract could alleviate IR-induced ER stress and protein ubiquitination, which finally lead to cell apoptosis. Taken together, SEE could reduce hepatic IR injury through modulating protein oxidation and our results might help to develop novel therapeutic strategies against ROS-caused diseases.


Assuntos
Crocus/química , Hepatopatias/metabolismo , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Proteoma/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Catalase/análise , Catalase/metabolismo , Eletroforese em Gel Bidimensional , Etanol , Histocitoquímica , Marcação In Situ das Extremidades Cortadas , Fígado/química , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Carbonilação Proteica , Proteínas/análise , Proteínas/metabolismo , Proteoma/análise , Proteômica , Ratos , Ratos Wistar , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo , Proteínas Ubiquitinadas
19.
J Lipid Res ; 54(5): 1493-504, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23458847

RESUMO

The aerobic degradation of steroids by bacteria has been studied in some detail. In contrast, only little is known about the anaerobic steroid catabolism. Steroidobacter denitrificans can utilize testosterone under both oxic and anoxic conditions. By conducting metabolomic investigations, we demonstrated that S. denitrificans adopts the 9,10-seco-pathway to degrade testosterone under oxic conditions. This pathway depends on the use of oxygenases for oxygenolytic ring fission. Conversely, the detected degradation intermediates under anoxic conditions suggest a novel, oxygenase-independent testosterone catabolic pathway, the 2,3-seco-pathway, which differs significantly from the aerobic route. In this anaerobic pathway, testosterone is first transformed to 1-dehydrotestosterone, which is then reduced to produce 1-testosterone followed by water addition to the C-1/C-2 double bond of 1-testosterone. Subsequently, the C-1 hydroxyl group is oxidized to produce 17-hydroxy-androstan-1,3-dione. The A-ring of this compound is cleaved by hydrolysis as evidenced by H2(18)O-incorporation experiments. Regardless of the growth conditions, testosterone is initially transformed to 1-dehydrotestosterone. This intermediate is a divergence point at which the downstream degradation pathway is governed by oxygen availability. Our results shed light into the previously unknown cleavage of the sterane ring structure without oxygen. We show that, under anoxic conditions, the microbial cleavage of steroidal core ring system begins at the A-ring.


Assuntos
Biodegradação Ambiental , Gammaproteobacteria/metabolismo , Esteroides/química , Testosterona/metabolismo , Aerobiose , Anaerobiose , Gammaproteobacteria/química , Humanos , Oxirredução , Oxigênio/metabolismo , Esteroides/metabolismo , Testosterona/química
20.
Pharm Res ; 30(2): 435-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23070602

RESUMO

PURPOSE: Diphencyprone (DPCP) is a therapeutic agent for treating alopecia areata. To improve skin absorption and follicular targeting nanostructured lipid carriers (NLCs) were developed. METHODS: Nanoparticles were characterized by size, zeta potential, molecular environment, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). In vitro and in vivo skin absorption experiments were performed. Fluorescence and confocal microscopes for imaging skin distribution were used. RESULTS: NLCs with different designs were 208 ~ 265 nm with > 77% DPCP encapsulation. NLCs incorporating a cationic surfactant or more soybean phosphatidylcholine (SPC) showed higher lipophilicity compared to typical NLCs by Nile red emission. All NLCs tested revealed controlled DPCP release; burst release was observed for control. The formulation with more SPC provided 275 µg/g DPCP skin retention, which was greater than control and other NLCs. Intersubject deviation was reduced after DPCP loading into NLCs. Cyanoacrylate skin biopsy demonstrated greater follicular deposition for NLCs with more SPC compared to control. Cationic NLCs but not typical or SPC-containing carriers were largely internalized into keratinocytes. In vivo skin retention of NLCs with more SPC was higher than free control. Confocal imaging confirmed localization of NLCs in follicles and intercellular lipids of stratum corneum. CONCLUSIONS: This work encourages further investigation of DPCP absorption using NLCs with a specific formulation design.


Assuntos
Alopecia em Áreas/tratamento farmacológico , Ciclopropanos/administração & dosagem , Preparações de Ação Retardada/química , Folículo Piloso/metabolismo , Fosfatidilcolinas/química , Absorção Cutânea , Esqualeno/química , Animais , Preparações de Ação Retardada/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Queratinócitos/metabolismo , Camundongos , Camundongos Nus , Nanoestruturas/química , Tamanho da Partícula , Fosfatidilcolinas/metabolismo , Pele/metabolismo , Pele/ultraestrutura , Esqualeno/metabolismo , Tensoativos/química , Tensoativos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA