Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 115(4): 874-894, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340521

RESUMO

Thermogenesis - the ability to generate metabolic heat - is much more common in animals than in plants, but it has been documented in several plant families, most prominently the Araceae. Metabolic heat is produced in floral organs during the flowering time (anthesis), with the hypothesised primary functions being to increase scent volatilisation for pollinator attraction, and/or to provide a heat reward for invertebrate pollinators. Despite in-depth studies on the thermogenesis of single species, no attempts have yet been made to examine plant thermogenesis across an entire clade. Here, we apply time-series clustering algorithms to 119 measurements of the full thermogenic patterns in inflorescences of 80 Amorphophallus species. We infer a new time-calibrated phylogeny of this genus and use phylogenetic comparative methods to investigate the evolutionary determinants of thermogenesis. We find striking phenotypic variation across the phylogeny, with heat production in multiple clades reaching up to 15°C, and in one case 21.7°C above ambient temperature. Our results show that the thermogenic capacity is phylogenetically conserved and is also associated with inflorescence thickness. Our study paves the way for further investigations of the eco-evolutionary benefits of thermogenesis in plants.


Assuntos
Amorphophallus , Animais , Flores/genética , Filogenia , Inflorescência , Termogênese , Polinização
2.
Planta ; 259(5): 92, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504021

RESUMO

MAIN CONCLUSION: Fiber-like cells with thickened cell walls of specific structure and polymer composition that includes (1 → 4)-ß-galactans develop in the outer stem cortex of several moss species gametophytes. The early land plants evolved several specialized cell types and tissues that did not exist in their aquatic ancestors. Of these, water-conducting elements and reproductive organs have received most of the research attention. The evolution of tissues specialized to fulfill a mechanical function is by far less studied despite their wide distribution in land plants. For vascular plants following a homoiohydric trajectory, the evolutionary emergence of mechanical tissues is mainly discussed starting with the fern-like plants with their hypodermal sterome or sclerified fibers that have xylan and lignin-based cell walls. However, mechanical challenges were also faced by bryophytes, which lack lignified cell-walls. To characterize mechanical tissues in the bryophyte lineage, following a poikilohydric trajectory, we used six wild moss species (Polytrichum juniperinum, Dicranum sp., Rhodobryum roseum, Eurhynchiadelphus sp., Climacium dendroides, and Hylocomium splendens) and analyzed the structure and composition of their cell walls. In all of them, the outer stem cortex of the leafy gametophytic generation had fiber-like cells with a thickened but non-lignified cell wall. Such cells have a spindle-like shape with pointed tips. The additional thick cell wall layer in those fiber-like cells is composed of sublayers with structural evidence for different cellulose microfibril orientation, and with specific polymer composition that includes (1 → 4)-ß-galactans. Thus, the basic cellular characters of the cells that provide mechanical support in vascular plant taxa (elongated cell shape, location at the periphery of a primary organ, the thickened cell wall and its peculiar composition and structure) also exist in mosses.


Assuntos
Briófitas , Bryopsida , Células Germinativas Vegetais/metabolismo , Plantas/metabolismo , Bryopsida/metabolismo , Lignina/metabolismo , Galactanos/metabolismo , Parede Celular/metabolismo
3.
J Evol Biol ; 35(10): 1245-1282, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35975328

RESUMO

Yellow and red autumn leaves are typical of many temperate/boreal woody plants. Since the 19th century, it has been either considered the non-functional outcome of chlorophyll degradation that unmasks the pre-existing yellow and red pigments or that the de novo synthesis of red anthocyanins in autumn leaves indicated that it should have a physiological function, although it was commonly ignored. Defending free amino acids and various other resources released especially following the breakdown of the photosynthetic system, and mobilizing them for storage in other organs before leaf fall, is the cornerstone of both the physiological and anti-herbivory hypotheses about the functions of yellow and red autumn leaf colouration. The complicated phenomenon of conspicuous autumn leaf colouration has received significant attention since the year 2000, especially because ecologists started paying attention to its anti-herbivory potential. The obvious imperfection of the hypotheses put forth in several papers stimulated many other scientists. Hot debates among physiologists, among ecologists, and between physiologists and ecologists have been common since the year 2000, first because the various functions of yellow and red autumn leaf colouration are non-exclusive, and second because many scientists were trained to focus on a single subject. Here, I will review the debates, especially between the photoprotective and the anti-herbivory hypotheses, and describe both the progress in their understanding and the required progress.


Assuntos
Antocianinas , Folhas de Planta , Aminoácidos/metabolismo , Antocianinas/metabolismo , Clorofila/metabolismo , Folhas de Planta/metabolismo , Estações do Ano
4.
Mol Ecol ; 29(22): 4322-4336, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32964548

RESUMO

Isolation by environment (IBE) is a widespread phenomenon in nature. It is commonly expected that the degree of difference among environments is proportional to the level of divergence between populations in their respective environments. It is therefore assumed that a species' genetic diversity displays a pattern of IBE in the presence of a strong environmental cline if gene flow does not mitigate isolation. We tested this common assumption by analysing the genetic diversity and demographic history of Pisum fulvum, which inhabits contrasting habitats in the southern Levant and is expected to display only minor migration rates between populations, making it an ideal test case. Ecogeographical and subpopulation structure were analysed and compared. The correlation of genetic with environmental distances was calculated to test the effect of isolation by distance and IBE and detect the main drivers of these effects. Historical effective population size was estimated using stairway plot. Limited overlap of ecogeographical and genetic clustering was observed, and correlation between genetic and environmental distances was statistically significant but small. We detected a sharp decline of effective population size during the last glacial period. The low degree of IBE may be the result of genetic drift due to a past bottleneck. Our findings contradict the expectation that strong environmental clines cause IBE in the absence of extensive gene flow.


Assuntos
Variação Genética , Pisum sativum , Meio Ambiente , Fluxo Gênico , Deriva Genética , Genética Populacional
5.
Proc Natl Acad Sci U S A ; 113(51): 14674-14679, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930293

RESUMO

Diet is central for understanding hominin evolution, adaptation, and environmental exploitation, but Paleolithic plant remains are scarce. A unique macrobotanical assemblage of 55 food plant taxa from the Acheulian site of Gesher Benot Ya'aqov, Israel includes seeds, fruits, nuts, vegetables, and plants producing underground storage organs. The food plant remains were part of a diet that also included aquatic and terrestrial fauna. This diverse assemblage, 780,000 y old, reflects a varied plant diet, staple plant foods, environmental knowledge, seasonality, and the use of fire in food processing. It provides insight into the wide spectrum of the diet of mid-Pleistocene hominins, enhancing our understanding of their adaptation from the perspective of subsistence. Our results shed light on hominin abilities to adjust to new environments, facilitating population diffusion and colonization beyond Africa. We reconstruct the major vegetal foodstuffs, while considering the possibility of some detoxification by fire. The site, located in the Levantine Corridor through which several hominin waves dispersed out of Africa, provides a unique opportunity to study mid-Pleistocene vegetal diet and is crucial for understanding subsistence aspects of hominin dispersal and the transition from an African-based to a Eurasian diet.


Assuntos
Dieta , Fósseis , Hominidae/fisiologia , África , Animais , Arqueologia , Ecologia , Incêndios , Israel , Modelos Estatísticos , Paleontologia , Plantas , Dinâmica Populacional , Estações do Ano , Sementes , Especificidade da Espécie
6.
J Theor Biol ; 364: 1-6, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25193285

RESUMO

Some spiders are well-known to mimic flowers or other plant surfaces in order to be cryptic to both their prey and their predators. We propose that dense, thread-like white trichomes of some plants from Estonia, Greece, Israel and Japan visually mimic spider webs, lepidopteran and spider-mite web nests and plant-pathogenic fungi, and that it may result in reduced herbivory, since various herbivores avoid spider- or other arthropod webs to circumvent predation or toxic attacks, or refrain from colonizing plants that have already been occupied by other herbivores and pathogens. Spiders and other web-forming arthropods are also the prey of certain vertebrate predators and wasps, and therefore such predators may be attracted to these web-like plant structures and prey on the invertebrate herbivores occupying them. We do not dismiss the possibility that these web-like structures may also have other defensive or physiological functions or that they are not classic mimics but rather exploit the herbivore׳s perceptual state concerning the avoidance of potentially risky objects.


Assuntos
Artrópodes/química , Herbivoria/fisiologia , Hifas/fisiologia , Plantas/anatomia & histologia , Seda/química , Tricomas/crescimento & desenvolvimento , Animais , Fungos/fisiologia , Modelos Biológicos , Tricomas/anatomia & histologia
7.
J Exp Bot ; 65(8): 1917-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638899

RESUMO

The role of conscious versus unconscious selection is a central issue in plant domestication. While some authors hold that domesticated plants arose due to unconscious dynamics driven by selection pressures exerted by the ancient 'cultivation regime', others attribute an indispensable role to conscious and knowledge-based selection as an imperative component of Neolithic Near Eastern plant domestication. Recent experimental work demonstrated that, contrary to commonly held views, deep seed burial as part of the ancient cultivation regime cannot be considered as a general selection pressure underlying the increased seed size of domesticated legumes compared with their wild ancestors. This is a robust conclusion since, in three out of the eight legume species studied from different world regions, there was no association between larger seed size and better seedling emergence from depth. We concur with the authors that these legume crops were most likely under various and multiple (often interacting) selection pressures under domestication, thereby causing the observed parallel/convergent evolution of their larger grain size. However, it is puzzling that these authors did not mention the ever-present common denominator in plant domestication, i.e. conscious human decision-making. In our view, the human 'Mind' and the 'Science of the Concrete' à la Lévi-Strauss deserved to be discussed as an integral component of plant domestication.


Assuntos
Produtos Agrícolas/genética , Tomada de Decisões , Fabaceae/genética , Seleção Genética , Evolução Biológica , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Germinação , Humanos , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/anatomia & histologia , Sementes/genética , Sementes/crescimento & desenvolvimento
8.
Plants (Basel) ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337924

RESUMO

Florivory, i.e., flower herbivory, of various types is common and can strongly reduce plant fitness. Flowers suffer two very different types of herbivory: (1) the classic herbivory of consuming tissues and (2) nectar theft. Unlike the non-reversibility of consumed tissues, nectar theft, while potentially reducing a plant's fitness by lowering its attraction to pollinators, can, in various cases, be fixed quickly by the production of additional nectar. Therefore, various mechanisms to avoid or reduce florivory have evolved. Here, I focus on one of the flowers' defensive mechanisms, aposematism, i.e., warning signaling to avoid or at least reduce herbivory via the repelling of herbivores. While plant aposematism of various types was almost ignored until the year 2000, it is a common anti-herbivory defense mechanism in many plant taxa, operating visually, olfactorily, and, in the case of nectar, via a bitter taste. Flower aposematism has received only very little focused attention as such, and many of the relevant publications that actually demonstrated herbivore repellence and avoidance learning following flower signaling did not refer to repellence as aposematism. Here, I review what is known concerning visual-, olfactory-, and nectar-taste-based flower aposematism, including some relevant cases of mimicry, and suggest some lines for future research.

9.
Biol Rev Camb Philos Soc ; 99(3): 1100-1120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38291834

RESUMO

Floral bracts (bracteoles, cataphylls) are leaf-like organs that subtend flowers or inflorescences but are of non-floral origin; they occur in a wide diversity of species, representing multiple independent origins, and exhibit great variation in form and function. Although much attention has been paid to bracts over the past 150 years, our understanding of their adaptive significance remains remarkably incomplete. This is because most studies of bract function and evolution focus on only one or a few selective factors. It is widely recognised that bracts experience selection mediated by pollinators, particularly for enhancing pollinator attraction through strong visual, olfactory, or echo-acoustic contrast with the background and through signalling the presence of pollinator rewards, either honestly (providing rewards for pollinators), or deceptively (attraction without reward or even trapping pollinators). However, studies in recent decades have demonstrated that bract evolution is also affected by agents other than pollinators. Bracts can protect flowers, fruits, or seeds from herbivores by displaying warning signals, camouflaging conspicuous reproductive organs, or by providing physical barriers or toxic chemicals. Reviews of published studies show that bracts can also promote seed dispersal and ameliorate the effects of abiotic stressors, such as low temperature, strong ultraviolet radiation, heavy rain, drought, and/or mechanical abrasion, on reproductive organs or for the plants' pollinators. In addition, green bracts and greening of colourful bracts after pollination promote photosynthetic activity, providing substantial carbon (photosynthates) for fruit or seed development, especially late in a plant's life cycle or season, when leaves have started to senesce. A further layer of complexity derives from the fact that the agents of selection driving the evolution of bracts vary between species and even between different developmental stages within a species, and selection by one agent can be reinforced or opposed by other agents. In summary, our survey of the literature reveals that bracts are multifunctional and subject to multiple agents of selection. To understand fully the functional and evolutionary significance of bracts, it is necessary to consider multiple selection agents throughout the life of the plant, using integrative approaches to data collection and analysis.


Assuntos
Flores , Magnoliopsida , Polinização , Magnoliopsida/fisiologia , Flores/fisiologia , Polinização/fisiologia , Evolução Biológica , Animais
10.
J Exp Bot ; 64(4): 815-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23440172

RESUMO

The claim that the 'classic' eight 'founder crop' package (einkorn wheat, emmer wheat, barley, lentil, pea, chickpea, bitter vetch, and flax) underlying the emergence of agriculture in the Near East is a relic of a larger number of domesticated species is addressed. The 'lost' crops concept relies on the idea that additional taxa were at certain points in time and in certain locations genuine crops, which were later abandoned. The issue is highly relevant to the debate concerning mono- versus polyphyletic domestication, because if there were numerous 'false starts' that were subsequently lost, this implies that plant domestication occurred over a protracted time period, and across a wide geographic range. Different criteria were used for declaring those taxa as 'lost' crops, including, but not limited to (i) identification in archaeobotanical assemblages of grains from species which are not known as crops at present; (ii) identification of such grains in what is interpreted to have been Neolithic storage facilities; and (iii) recent botanical observations on populations of crop wild relatives in disturbed habitats. The evidence for four presumed 'lost' crops (wild oat, rambling vetch, rye, and wild black lentil) and the broad bean is evaluated, and discussed in light of data on Croatian and Israeli wild pea, and Moroccan wild lentil in disturbed habitats. Based on present knowledge, the broad bean might emerge as a founder crop (without an identified wild progenitor). The same may hold true for rye, which was never lost since its adoption in the Pre-Pottery Neolithic B period in Anatolia. In the remaining three cases, there are alternative, more likely, explanations for the archaeological finds or the recent botanical observations rather than 'lost' domestication episodes.


Assuntos
Produtos Agrícolas/fisiologia , Lens (Planta)/fisiologia , Poaceae/fisiologia , Adaptação Fisiológica , Agricultura/história , Agricultura/métodos , Arqueologia/métodos , Produtos Agrícolas/história , Ecossistema , Geografia , História Antiga , Oriente Médio , Sementes/fisiologia
12.
Plants (Basel) ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37653902

RESUMO

The bark fulfils several essential functions in vascular plants and yields a wealth of raw materials, but the understanding of bark structure and function strongly lags behind our knowledge with respect to other plant tissues. The recent technological advances in sampling and preparation of barks for anatomical studies, along with the establishment of an agreed bark terminology, paved the way for more bark anatomical research. Whilst datasets reveal bark's taxonomic and functional diversity in various ecosystems, a better understanding of the bark can advance the understanding of plants' physiological and environmental challenges and solutions. We propose a set of priorities for understanding and further developing bark anatomical studies, including periderm structure in woody plants, phloem phenology, methods in bark anatomy research, bark functional ecology, relationships between bark macroscopic appearance, and its microscopic structure and discuss how to achieve these ambitious goals.

13.
J Exp Bot ; 63(12): 4333-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22717409

RESUMO

The recent review by Fuller et al. (2012a) in this journal is part of a series of papers maintaining that plant domestication in the Near East was a slow process lasting circa 4000 years and occurring independently in different locations across the Fertile Crescent. Their protracted domestication scenario is based entirely on linear regression derived from the percentage of domesticated plant remains at specific archaeological sites and the age of these sites themselves. This paper discusses why estimates like haldanes and darwins cannot be applied to the seven founder crops in the Near East (einkorn and emmer wheat, barley, peas, chickpeas, lentils, and bitter vetch). All of these crops are self-fertilizing plants and for this reason they do not fulfil the requirements for performing calculations of this kind. In addition, the percentage of domesticates at any site may be the result of factors other than those that affect the selection for domesticates growing in the surrounding area. These factors are unlikely to have been similar across prehistoric sites of habitation, societies, and millennia. The conclusion here is that single crop analyses are necessary rather than general reviews drawing on regression analyses based on erroneous assumptions. The fact that all seven of these founder crops are self-fertilizers should be incorporated into a comprehensive domestication scenario for the Near East, as self-fertilization naturally isolates domesticates from their wild progenitors.


Assuntos
Agricultura/estatística & dados numéricos , Arqueologia , Botânica , Produtos Agrícolas/genética , Fluxo Gênico/genética , Arqueologia/estatística & dados numéricos , Botânica/estatística & dados numéricos , Fabaceae/genética , Modelos Lineares , Oriente Médio , Poaceae/genética , Seleção Genética
14.
Adv Appl Microbiol ; 74: 97-116, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21459195

RESUMO

Recently, it has been proposed that plants which have spines, thorns, and prickles use pathogenic aerobic and anaerobic bacteria, as well as pathogenic fungi, for defense against herbivores, especially vertebrates. Their sharp defensive appendages may inject various pathogenic agents into the body of the herbivores by piercing the outer defensive layer of the skin in a type of biological warfare. Here, we review data regarding the various bacterial taxa found on spines, as well as the medical literature regarding infections by bacteria and fungi related to spine injuries. We also present new evidence that, concerning the microbial flora, spines belonging to the palm tree Washingtonia filifera are probably a different habitat than the nondefensive green photosynthetic leaf surfaces. In addition, many plant species have microscopic internal and external spines (raphids and silica needles) which can also wound large herbivores as well as insects and other small invertebrate herbivores that usually attack in between large spines, prickles, and thorns. The large spines and sharp microscopic structures may inject not only the microorganisms that inhabit them into the herbivore's tissues, but also those preexisting on the skin surface or inside the digestive system of the herbivores and on the surface of nonspiny plant parts. A majority of the spiny plants visually advertise their spiny nature, a characteristic known as aposematism (warning coloration). The pathogenic microorganisms may sometimes be much more dangerous than the physical wounds inflicted by the spines. In accordance, we suggest that the possible cooperation or even just the random association of spines with pathogenic microorganisms contributed to the evolution of aposematism in spiny plants and animals. The role of these sharp defensive structures in inserting pathogenic viruses into the tissues of herbivores was never studied systematically and deserves special attention.


Assuntos
Herbivoria , Plantas , Animais , Evolução Biológica , Guerra Biológica , Ecossistema , Fungos , Insetos , Doenças das Plantas , Coluna Vertebral
15.
Bioessays ; 31(1): 84-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19154006

RESUMO

Carrion and dung odours of various flowers have traditionally been considered an adaptation for attracting the flies and beetles that pollinate them. While we accept the role of such odours in pollinator attraction, we propose that they may also have another, overlooked, anti-herbivore defensive function. We suggest that such odours may deter mammalian herbivores, especially during the critical period of flowering. Carrion odour is a good predictor for two potential dangers to mammalian herbivores: (1) pathogenic microbes, (2) proximity of carnivores. Similarly, dung odour predicts faeces-contaminated habitats that present high risks of parasitism. These are two new types of repulsive olfactory aposematic mimicry by plants: (1) olfactory feigning of carcass (thanatosis), a well-known behavioural defensive strategy in animals, (2) olfactory mimicry of faeces, which also has a defensive visual parallel in animals.


Assuntos
Odorantes , Olfato , Animais , Comportamento Animal , Fezes , Comportamento Alimentar , Flores , Modelos Biológicos , Modelos Genéticos , Modelos Teóricos , Plantas/metabolismo , Polinização
16.
Plant Signal Behav ; 16(12): 1991712, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839800

RESUMO

Some plant lineages, such as Araceae and Orchidaceae, have independently evolved deceptive flowers. These exploit the insect's perception and deceive the insects into believing to have located a suitable opportunity for reproduction. The scent compounds emitted by the flowers are the key signals that dupe the insects, guiding them to the right spots that in turn ensure flower pollination. Most species of the genus Amorphophallus of the Araceae emit scent compounds that are characteristic of a deceit, suggesting a specific plant pollinator interaction and according odors. However, only a few clear evolutionary trends in regard to inflorescence odors in Amorphophallus could be traced in previous studies - an intriguing result, considered the multitude of characteristic scent compounds expressed in Amorphophallus as well as the key function of scent compounds in deceptive floral systems in general. At least two factors could account for this result. (1) The deceptive pollinator-attraction floral system, including the emitted scent compounds, is less specific than assumed. (2) An evolutionary trend cannot be discerned if the intraspecific scent variation (odor polymorphism) exceeds the interspecific odor variation. Therefore, we discuss the potential deceptive function of the emitted scent compounds, in particular those that are related to cadaveric decomposition. Moreover, we review the data about emitted scent compounds in Amorphophallus with a focus on putative odor polymorphism. Upon examination, it appears that the emitted scent compounds in Amorphophallus are highly mimetic of decomposing organic materials. We show that several species display odor polymorphism, which in turn might constitute an obstacle in the analysis of evolutionary trends. An important odor polymorphism is also indicated by subjective odor perceptions. Odor polymorphism may serve several purposes: it might represent an adaptation to local pollinators or it might assumingly prevent insects from learning to distinguish between a real decomposing substrate and an oviposition-site mimic.


Assuntos
Amorphophallus , Flores , Odorantes , Amorphophallus/genética , Flores/química , Flores/genética , Polinização
17.
Front Plant Sci ; 12: 632464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912203

RESUMO

Glandular trichomes are well known to participate in plant chemical and physical defenses against herbivores, especially herbivorous insects. However, little is known about large-scale geographical patterns in glandular trichome occurrence. Herbivory pressure is thought to be higher at low elevations because of warmer and more stable climates. We therefore predicted a higher proportion of species with glandular trichomes at low elevations than at higher elevations. We compiled glandular trichome data (presence/absence) for 6,262 angiosperm species from the Hengduan Mountains (a global biodiversity hotspot in southwest China). We tested the elevational gradient (800-5,000 m a.s.l.) in the occurrence of plant species with glandular trichomes, and its correlations with biotic (occurrence of herbivorous insects) and abiotic factors, potentially shaping the elevational gradient in the occurrence of glandular trichomes. We found a significantly positive relationship between elevation and the occurrence of glandular trichomes, with the proportion of species having glandular trichomes increasing from 11.89% at 800 m a.s.l. to 17.92% at above 4,700 m. This cross-species relationship remained significant after accounting for phylogenetic relationships between species. Herbivorous insect richness peaked at mid-elevations and its association with the incidence of glandular trichomes was weak. Mean annual temperature was the most important factor associated negatively with glandular trichomes. Our results do not support the hypothesis that plant defenses decrease with increasing elevation. In contrast, a higher proportion of plant species with glandular trichome toward higher elevations is observed. Our results also highlight the importance of considering the simultaneous influences of biotic and abiotic factors in testing geographical variation in multifunctional plant defenses.

18.
Proc Natl Acad Sci U S A ; 109(20): E1212; author reply E1213, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22508997
19.
Plant Divers ; 42(2): 83-91, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32373766

RESUMO

Spinescence has been thought to have evolved mainly as a defense against herbivores. Thus, studying its evolution in a whole flora is an excellent approach for understanding long-term plant-herbivore interactions. In this study, we characterized the spinescent plant species of Jiaozi Snow Mountain, Southwestern China, in order to explore the effects of life forms, plant organs, phylogenetic position, and phytogeographical origin on spinescence occurrence. The Jiaozi Snow Mountain flora includes 137 spinescent species (9.2%) out of 1488 angiosperm species. We found that in these spinescent species, vegetative organs (70.0%) were significantly more defended than reproductive organs (43.8%). Life form had a significant effect on spinescence occurrence. Woody species (18.6%) were more likely to be spiny than non-woody species (6.4%); moreover, woody species mostly defend their vegetative organs (92.2%), whereas herbaceous species mostly defend their reproductive organs (73.3%). For woody plants, leaf habit has a significant effect on spinescence. Specifically, spinescence was more common on the reproductive organs of deciduous woody species than on those of evergreen woody species; furthermore, spinescence was more common on the leaf blades of evergreens than on those of deciduous species; however, the proportion of spinescent petioles in deciduous species was significantly higher than in evergreens. The most common spine color was yellow (40.8%), followed by white (16.8%), red (15.8%), and brown (14.3%); furthermore, 74.4% of spinescence that showed aposematic color was a different color than the plant organ on which grown. These findings suggest that spinescence is visually aposematic in the Jiaozi Snow Mountain flora. Phylogenetically, more families tended to have spines on vegetative organs (83.3% in vegetative organs, 50.0% in reproductive organs), but the phylogenetic signals were weak. The proportion of spinescence was not significantly different between tropical (9.8% of genera, 7.6% of species) and temperate (13.2% of genera, 9.5% of species) elements. These results indicate that in the Jiaozi Snow Mountain flora spinescence evolved differently in various life forms and plant organs, but that these differences were not influenced by phylogenetic position or phytogeographical origin.

20.
Front Plant Sci ; 11: 488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411161

RESUMO

Cell wall thickening and development of secondary cell walls was a major step in plant terrestrialization that provided the mechanical support, effective functioning of water-conducting elements and fortification of the surface tissues. Despite its importance, the diversity, emergence and evolution of secondary cell walls in early land plants have been characterized quite poorly. Secondary cell walls can be present in different cell types with fibers being among the major ones. The necessity for mechanical support upon increasing plant height is widely recognized; however, identification of fibers in land plants of early taxa is quite limited. In an effort to partially fill this gap, we studied the fibers and the composition of cell walls in stems of the sporophyte of the living fossil Psilotum nudum. Various types of light microscopy, combined with partial tissue maceration demonstrated that this perennial, rootless, fern-like vascular plant, has abundant fibers located in the middle cortex. Extensive immunodetection of cell wall polymers together with various staining and monosaccharide analysis of cell wall constituents revealed that in P. nudum, the secondary cell wall of its cortical fibers is distinct from that of its tracheids. Primary cell walls of all tissues in P. nudum shoots are based on mannan, which is also common in other extant early land plants. Besides, the primary cell wall contains epitope for LM15 specific for xyloglucan and JIM7 that binds methylesterified homogalacturonans, two polymers common in the primary cell walls of higher plants. Xylan and lignin were detected as the major polymers in the secondary cell walls of P. nudum tracheids. However, the secondary cell wall in its cortical fibers is quite similar to their primary cell walls, i.e., enriched in mannan. The innermost secondary cell wall layer of its fibers but not its tracheids has epitope to bind the LM15, LM6, and LM5 antibodies recognizing, respectively, xyloglucan, arabinan and galactan. Together, our data provide the first description of a mannan-based cell wall in sclerenchyma fibers, and demonstrate in detail that the composition and structure of secondary cell wall in early land plants are not uniform in different tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA